AGRICULTURAL ENGINEERING FORMULA

Alexis T. Belonio

Department of Agricultural Engineering and Environmental Management College of Agriculture Central Philippine University Iloilo City, Philippines 2006

About the Author

Alexis T. Belonio is a Professional Agricultural Engineer. Presently, he is an Associate Professor and Chairman of the Department of Agricultural Engineering and Environmental Management, College of Agriculture, Central Philippine University, Iloilo City. He finished his Bachelor of Science in Agricultural Engineering and Master of Science degrees from Central Luzon State University, Muñoz, Nueva Ecija. He has been deeply involved in teaching, research, project development, and entrepreneurial activity on

various agricultural engineering projects since 1983.

He was awarded by the Philippine Society of Agricultural Engineers (PSAE) as Most Outstanding Agricultural Engineer in the Field of Farm Power and Machinery and by the Professional Regulation Commission (PRC) as Outstanding Professional in the Field of Agricultural Engineering in 1993. In 1997, he was awarded by the TOYM Foundation and the Jerry Roxas Foundation as the Outstanding Young Filipinos (TOYF) in the Field of Agricultural Engineering. He is presently a PSAE Fellow Member.

As a dedicated professional, he serves as technical consultant to various agricultural machinery manufacturers in Region VI. He also serves as a Reviewer of the TGIM Foundation Review Center on the field of Agricultural Machinery and Allied Subjects, and Agricultural Processing and Allied Subjects since 1998. He has written and published several research and technical papers.

Other Books Available:

Dictionary of Agricultural Engineering
Agricultural Engineering Design Data Hanbook
Problems and Solutions in Agricultural Engineering
Agricultural Engineering Reviewer: Volume I
Agricultural Engineering Reviewer: Volume II
Rice Husk Gas Stove Handbook
Small Farm Irrigation Windpump Handbook
Axial Flow Biomass Shredder Handbook

AGRICULTURAL ENGINEERING FORMULA

Alexis T. Belonio

Department of Agricultural Engineering and Environmental Management College of Agriculture Central Philippine University Iloilo City, Philippines

Acknowledgement:

The author is very much thankful to the Lord God Almighty who inspired him to prepare this material for the benefit of those who are called to serve in the agricultural engineering profession.

He also wishes to acknowledge the following for the motivation and encouragement during the preparation of this material: (1) Dr. Norbert Orcullo of the TGIM Foundation Review Center, Manila who is persistent to fully equip students to pass the Professional AE Board Examination; and (2) Dr. Reynaldo Dusaran of the College of Agriculture, Central Philippine University, Iloilo City who is always supportive to his students and Department to obtain higher percentage passing in the board examination.

To his friends in the Philippine Society of Agricultural Engineers in the Regional and National Chapters who also encouraged me to collect all the information and materials needed in the preparation of this Handbook.

To Salve and their children: Mike, Happy, Humble, Jireh, Justly, Tenderly, and Wisdom, for their prayer and inspiration.

PREFACE

This book is a compilation of the various formula that are commonly used in agricultural engineering curriculum. Students who are taking the course as well as those who are preparing for the Professional Agricultural Engineer Board Examination may find this book useful. Practicing Agricultural Engineers and those other Engineers working in the field of agriculture will find this book as a handy reference material for design, estimate, testing, and evaluation activities.

The presentation of the formula in this book covers the different subject matter as follows: agricultural power and energy, agricultural machinery and equipment, agricultural processing and food engineering, farm electrification and instrumentation, agricultural buildings and infrastructures, agricultural waste utilization and environmental pollution, and soil and water engineering. The subject areas are arranged in alphabetical manner for ease of finding the formula needed. The parameters and units for each formula are specified in the book and can be converted to either English, Metric, or SI system using the conversion constants given at the end of the book.

This book is still in draft form. Additional subject matter and formula will be included in the future to make this material more comprehensive. Comments and suggestions are welcome for the future improvement of this book.

God bless and may this book become useful to you!

ALEXIS T. BELONIO

TABLE OF CONTENTS

	Page
Air Moving Devices	1
Agricultural Building Construction	4
Agricultural Economics	9
Algebra	14
Animal Space Requirement (Minimum)	20
Bearings	24
Biogas	26
Biomass Cookstove	29
Biomass Furnace	31
Boarder Irrigation	33
Chain Transmission	34
Conveyance Channel	38
Corn Sheller	40
Cost Return Analysis	42
Cyclone Separator	45
Differential Calculus	48
Drip Irrigation	50
Electricity	52
Electric Motor	56
Electrification	58
Engine	60
Engine Foundation	65
Flat and V-Belt Belt Transmission	66
Fluid Mechanics	70
Furrow Irrigation	75
Gas Cleaning	76
Gasifier	77
Gears	79
Grain Dryer	80
Grain Engineering Properties	84
Grain Seeder	87
Grain Storage Loss	90
Grain Storage Structure	92
Heat Transfer	95
Human and Animal Power	97

Hydraulic of Well	99
Hydraulics	100
Hydro Power	101
Infiltration, Evaporation and Transpiration	102
Integral Calculus	104
Irrigation Efficiency	108
Irrigation Requirement	110
Material Handling	112
Pipe Flow	115
Power Tiller	116
Pump	119
Pump Laws	121
Rainfall and Runoff	123
Reaper Harvester	124
Refrigeration	125
Rice Milling	127
Rice Thresher	129
Shaft, Key, and Keyway	131
Soil, Water, Plant Relation	134
Soil and Water Conservation Engineering	136
Solar Thermal System	152
Solid Geometry	154
Sprayer	156
Sprinkler Irrigation	158
Statistics	160
Temperature	163
Tillage	164
Tractor	167
Trigonometry	171
Water Treatment	174
Weir, Flumes, and Orifice	175
Wind Energy	177
CONVERSION CONSTANTS	179
REFERENCES	184

AIR MOVING DEVICES

Specific Speed	N _s – specific speed, dmls
	N - speed of air moving unit, rpm
$N_s = [N Q^{0.5}]/[Ps^{0.75}]$	Q - airflow, cfm
	P_s – pressure requirement, in. H_2O
Impeller Diameter	D - diameter of impeller, in.
	P _s – pressure requirement, in. H ₂ O
$(2.35) 108 P_s$	ψ - pressure coefficient, 0.05 to 2.0
$D = \sqrt{\frac{(2.35) \ 108 \ P_s}{\psi \ N^2}}$	N - speed of impeller, rpm
$\bigvee \psi N^2$	
Pitch Angle for Axial Fan	α - pitch angle, deg
	Q - airflow, cfm
350 Q	N - speed of impeller, rpm
$\alpha = \sin -1$	D - diameter of impeller, in.
$\alpha = \sin -1 \frac{350 \text{ Q}}{\phi \text{ N D}^3}$	φ - flow coefficient, 0.01 to 0.80
Impeller Width (centrifugal and mixed	W – width of impeller, in.
flow blower)	Q - airflow, cfm
4	N - speed of impeller, rpm
$W = \frac{175 \text{ Q}}{\phi \text{ N D}^2}$	D - diameter of impeller, in.
$W = \frac{1}{1 + 2 \cdot 2^2}$	φ - flow coefficient, 0.01 to 0.80
φ N D ²	
I II W. 141 (4	W: 141 - C :11 :
Impeller Width (traverse flow)	W – width of impeller, in.
550 0	Q - airflow, cfm
$W = \frac{550 \text{ Q}}{\phi \text{ N D}^2}$	N - speed of impeller, rpm D - diameter of impeller, in.
$\sim 10^{-2}$	•
φΝυ	φ - flow coefficient, 0.01 to 0.80
for $0.5 \le W/D \le 10$	
$101 \text{ U.3} \leq \text{W/D} \leq 10$	

AIR MOVING DEVICES

Casing Dimension (Forward Curved Centrifugal)	H _c – height of casing, in.
$H_c = 1.7 D$	B _c - breath of casing, in
$B_c = 1.5 D$	W _c – width of casing, in.
$W_c = 1.25 W + 0.1 D$	D – diameter of impeller, in
	W - width of impeller, in
Casing Dimension (Narrow Backward Curved	H _c – height of casing, in.
Centrifugal)	B _c - breath of casing, in
$H_c = 1.4 D$	W _c – width of casing, in.
$B_c = 1.35 D$	D – diameter of impeller, in
$W_c = W + 0.1 D$	W - width of impeller, in
Casing Dimension (Wide Backward Curved	H _c – height of casing, in.
Centrifugal)	B _c - breath of casing, in
$H_c = 2.0 D$	W _c – width of casing, in.
$B_c = 1.6 D$	D – diameter of impeller, in
$W_c = W + 0.16 D$	W - width of impeller, in
Casing Dimension (Mixed Flow)	H _c – height of casing, in.
$H_c = 2.0 D$	B _c - breath of casing, in
$B_c = 2.0 D$	W _c – width of casing, in.
$W_c = 0.46 D$	D – diameter of impeller, in
Casing Dimension (Traverse Flow)	H _c – height of casing, in.
$H_c = 2.2 D$	B _c - breath of casing, in
$B_c = 2.2 D$	W _c – width of casing, in.
$W_c = W + [D/4]$	D – diameter of impeller, in
Casing Dimension (Vane Axial Flow)	W _c – width of casing, in.
$W_c = 1.2 D$	D – diameter of impeller, in
Casing Dimension (Tube Axial Flow)	W _c – width of casing, in.
$W_c = 1.0 D$	D – diameter of impeller, in
Casing Dimension (Partially Cased Fan)	W _c – width of casing, in.
$W_c = 0.5 D$	D – diameter of impeller, in

AIR MOVING DEVICES

Air Horsepower	AHP - air horsepower, hp
	Q - airflow rate, cfm
Q V H AHP =	V - specific weight of air, lb/ft ³
AHP =	H - total head, ft
33,000	
Brake Horsepower	BHP - brake horsepower, hp
Drune Horsepower	Q - airflow rate, cfm
Q P _a	P _a - static pressure, in. water
BHP =	$\xi_{\rm f}$ - fan efficiency, decimal
$6360~\xi_{ m f}$	•
Mechanical Efficiency	ξ_f - fan efficiency, decimal
	AHP - air horsepower, hp
$\xi_{\rm f} = AHP / BHP$	BHP - brake horsepower, hp
Duonallay Ean Ditah	P - pitch in.
Propeller Fan Pitch	r - fan radius, in.
$P = 2 \pi r \tan \alpha$	α - angle of fan blade twist, deg
Ean Laws	D – impeller diameter, in.
$H_1^{-1/4} = O_2^{-1/2}$	H - fan head, in. H ₂ 0
$D_2 = D_1$	Q - air flow rate, cfm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	N – impeller speed, rpm
$Q_1^{1/2} H_2^{3/4}$	H - fan head, in. H ₂ 0
Pan Laws $Q_1^{1/2} H_2^{3/4}$ $N_2 = N_1 - H_1^{3/4} Q_2^{1/2}$	Q - air flow rate, cfm
H_1 Q_2	TID C 1
Fan Laws	HP – fan horsepower, hp
$D_2 - N_2$	D - fan diameter, in.
$D_{2}^{5} N_{2}^{3}$ $HP_{2} = HP_{1} - D_{1}^{5} N_{1}^{3}$	N - speed of impeller, rpm
D_{\parallel} N_{\parallel}	

Volume of Cement/Sand/Gravel (1:2:3)	V _c - volume of cement, bags
volume of Cement/Sand/Graver (1.2.3)	
V 10.5 V	V _s - volume of sand, m ³
$V_c = 10.5 V_{co}$	V _g - volume of gravel, m ³
$V_s = 0.42 V_{co}$	V _{co} – volume of concrete, m ³
$V_g = 0.84 V_{co}$	
Volume of Cement/Sand/Gravel (1:2:4)	V _c - volume of cement, bags
,	V_s - volume of sand, m ³
$V_{c} = 7.84 V_{co}$	V _g - volume of gravel, m ³
$V_s = 0.44 V_{co}$	V_{co} – volume of concrete, m ³
$V_g = 0.88 V_{co}$	veo volume of concrete, in
v _g - 0.88 v _{co}	
V-1	V1
Volume of Cement/Sand/Gravel (1:3:6)	V _c - volume of cement, bags
	V _s - volume of sand, m ³
$V_c = 5.48 V_{co}$	V _g - volume of gravel, m ³
$V_s = 0.44 V_{co}$	V _{co} – volume of concrete, m ³
$V_g = 0.88 V_{co}$	
Volume of Cement/Sand/Gravel	V _c - volume of cement, bags
(1:3.5:7)	V_s - volume of sand, m^3
	V _g - volume of gravel, m ³
$V_c = 5.00 \ V_{co}$	V_{co} – volume of concrete, m ³
$V_{s} = 0.45 V_{co}$	veo volume of concrete, in
$V_g = 0.90 V_{co}$	
v _g = 0.90 v _{co}	
Number of Hallow Pleaks now m ²	N number of hellow blocks nices
Number of Hallow Blocks per m ²	N _{HB} - number of hallow blocks, pieces
Wall Area (8 in. x 16 in.)	A_w – area of wall, m^2
N 10 1	
$N_{HB} = 13 A_{w}$	

Volume of Cement and Sand for Mortar and	V _c - volume of cement, bags
Plaster per m ³ of Mixture (1:2)	$V_{\rm m}$ – volume of mixture, m ³
, ,	V _s - volume of sand, m ³
$V_c = 14.5 V_m$	
$V_s = 1.0 V_m$	
Volume of Cement and Sand for Mortar and	V _c - volume of cement, bags
Plaster per m ³ of Mixture (1:3)	$V_{\rm m}$ – volume of mixture, m ³
	V _s - volume of sand, m ³
$V_c = 9.5 V_m$	
$V_{\rm s} = 1.0 V_{\rm m}$	
Volume of Cement and Sand for Mortar and	V _c - volume of cement, bags
Plaster per m ³ Mixture (1:4)	$V_{\rm m}$ – volume of mixture, m ³
	V _s - volume of sand, m ³
$V_c = 7.0 V_m$	
$V_s = 1.0 V_m$	
Volume of Cement and Sand for Mortar and	V _c - volume of cement, bags
Plaster per m ³ Mixture (1:5)	$V_{\rm m}$ – volume of mixture, m ³
	V _s - volume of sand, m ³
$V_c = 6.0 V_m$	
$V_s = 1.0 V_m$	
Quantity of Cement and Sand for Plastering	V _c - volume of cement, bags
per Face (50kg Cement-Class B)	V_s - volume of sand, m^3
$V_c = 0.238 A_w$	A_w – area of wall, m^2
$V_s = 0.025 A_w$	

Quantity of Cement and Sand for	V _c - volume of cement, bags
Plastering per Face (50kg Cement-Class	V_s - volume of sand, m^3
C)	A_w – area of wall, m^2
	Tiw area of wait, in
$V_c = 0.170 A_w$	
$V_{\rm s} = 0.176 A_{\rm w}$ $V_{\rm s} = 0.025 A_{\rm w}$	
Quantity of Cement and Sand for	V _c - volume of cement, bags
· · · · · · · · · · · · · · · · · · ·	V_s - volume of sand, m^3
Plastering per Face (50kg Cement-Class	
D)	A_w – area of wall, m^2
V - 0.150 A	
$V_{c} = 0.150 A_{w}$	
$V_{\rm s} = 0.025 A_{\rm w}$	
Quantity of Cement and Sand per 100 - 4	V _c - volume of cement, bags
in. CHB Mortar (50kg Cement-Class B)	V _s - volume of sand, m ³
	N _{HB} – number of hallow blocks
$V_c = 3.328 N_{HB}/100$	
$V_s = 0.350 N_{HB} / 100$	
Quantity of Cement and Sand per 100 - 6	V _c - volume of cement, bags
in. CHB Mortar (50kg Cement-Class B)	V_s - volume of sand, m ³
$V_c = 6.418 N_{HB}/100$	N _{HB} – number of hallow blocks
$V_s = 0.675 N_{HB} / 100$	
Quantity of Cement and Sand per 100 - 8	V _c - volume of cement, bags
in. CHB Mortar (50kg Cement-Class B)	V _s - volume of sand, m ³
	N _{HB} – number of hallow blocks
$V_c = 9.504 N_{HB}/100$	
$V_s = 1.000 N_{HB} / 100$	
$v_s - 1.000 N_{HB}/100$	

Quantity of Cement and Sand per 100 - 8 in. CHB Mortar (50kg Cement-Class B) $V_c = 9.504 \ N_{HB} \ / 100$ $V_s = 1.000 \ N_{HB} \ / 100$	V_c - volume of cement, bags V_s - volume of sand, m^3 N_{HB} – number of hallow blocks
Weight of Tie Wire (No. 16 GI wire) $W_{tw} = 20 \ W_{rb}$	W_{tw} – weight of tie wire, kg W_{rb} – weight of reinforcement bar, tons
Vertical Reinforcement Bar Requirement $L_b = 3.0 \ A_w \ (0.4 \ m \ spacing)$ $L_b = 2.1 \ A_w \ (0.6 \ m \ spacing)$ $L_b = 1.5 \ A_w \ (0.8 \ m \ spacing)$	L_b - length of vertical bar needed, m A_w - area of wall, m^2
Horizontal Reinforcement Bar Requirement $L_b = 2.7 \ A_w (every \ 2 \ layers)$ $L_b = 1.9 \ A_w (every \ 3 \ layers)$ $L_b = 1.7 \ A_w (every \ 4 \ layers)$	L_b - length of vertical bar needed, m A_w - area of wall, m^2

Board Feet of Lumber $BF = \frac{T W L}{12}$	BF - number of board foot, bd-ft T - thickness of wood, in. W - width of wood, in. L - length of wood, ft
Number of Board Foot that can be Obtained from Log $BF = \frac{(D-4)^2 L}{16}$	BF - number of board foot, bd-ft D - small diameter of log, in. L - length of log, ft
Volume of Paint Needed for Wood $P_v = 3.78 \ A_w / 20 (1^{st} \ coating)$ $P_v = 3.78 \ A_w / 25 (2^{nd} \ coating)$	P_{ν} - volume of paints needed, liters A_{w} - area of wall, m^{2}
Nails Requirement $W_n = 20 \; BF_w / 1000$	W_n - weight of nail needed, kg BF_w – number of board foot of wood, bd-ft
Wood Preservation $V_p = A_s / 9.3$	V_p - volume of preservatives, gal A_s - area of surface, m^2

Elasticity	E – elasticity
% ΔQd	Qd – quantity of demand
$E = \frac{\sqrt{6 \Delta Q d}}{\sqrt{6 \Delta Q d}}$	P - Price
% ΔΡ	r - riice
% ΔΡ	
D 1 4 DI 41 14	
Point Elasticity	Q – quantity
$\left(\begin{array}{c} \Delta Q \\ \end{array}\right)$	P - price
	ΔQ – change in quantity
$Q+Q_2/2$	ΔP – change in price
Epa = -	
<u>ΔP</u>	
$Epa = \frac{Q + Q_2/2}{\Delta P}$ $P_1 + P_2/2$	
$P_1 + P_2 / 2$	
Simple Interest	I – total interest earned for N
	period
I = P i N	i – interest rate
	N – number of interest period
F = P + I	P – principal or the present
	value
	F – future value or the total
	amount to be repaid
Compound Interest	F – future value or the total
00111p 0 11110 1 000	amount to be repaid
$F = P(1+i)^n$	P – principal or the present
	value
	i – interest rate
	n – number of interest period
Effective Interest Rte	EIR – effective interest rate
Effective fitterest Ric	F – future value or the total
FIP = F - P	amount to be repaid
EIR = F - P	P – principal or the present
EIR= $(1 + i)^n - 1$	value
EIX-(1 + 1) - 1	i – nominal interest rate
	n – interest period

Perpetuity

1. To find for P given A:

$$P = \left[\frac{(1+i)^{n}-1}{i(1+i)^{n}} \right]$$

 $+i)^n$

2. T find for A given P:

$$A = P \left[\begin{array}{c} i (1+i)^n \\ \hline (1+i)^n - 1 \end{array} \right]$$

3. To find for F given A:

$$A = P \left[\begin{array}{c} (1+i)^n - 1 \\ i \end{array} \right]$$

4. To find for A given F:

$$A = F \left[\frac{i}{(1+i)^n - 1} \right]$$

P – principal or present value

A – annuity

i – interest rate

n – interest period

F – Future value or the total amount to be repaid

Perpetuity and Capitalized Cost	P – capitalized value of A
Terpeturey and Capitanzed Cost	x – amount needed to provide
$\mathbf{p} = \mathbf{v} \left[\mathbf{i} \right]$	for replacement or maintenance
$P = \underline{x} \begin{bmatrix} \underline{i} \\ (1+i)^n - 1 \end{bmatrix}$	for K period
1 (1+1) -1	Tor K period
Arithmetic Gradient	A – uniform periodic amount
	equivalent to the arithmetic
$A = G \left \begin{array}{c} 1 \\ - \end{array} \right $	gradient series.
$A = G \left[\frac{1}{i} - \frac{n}{(1=i)^n - 1} \right]$	G – arithmetic gradient change
	in periodic amounts t the end
D 1 (1 + 12)	of each period.
$P = \frac{1}{i} - \frac{(1+i)^n}{i} - \frac{n}{(1+i)^n}$	P – present with of G
1 1 (1+1)	F – future worth of accommodated G
	accommodated G
$P = G \left((1+i)^n - 1 - n \right)$	
$P = G \left[\begin{array}{c c} \underline{(1+i)^n - 1} & - & \underline{n} \\ i & i & (1+i)^n \end{array} \right]$	
$F = G \left[\frac{(1+i)^n - 1}{n} - n \right]$	
$F = G \over i \qquad (1+i)^n - 1 - n$	
Depreciation Cost	d – annual depreciation
a ~	C _o – original cost
$d = \frac{C_{o} \cdot C_{n}}{}$	n – useful life; years
d =	C_n – salvage value or the scrap
n	value
$D_m = m \times d$	D _m – accrued total depreciation up to "m" years
D _m - III x u	m – age of property at any time
$C_m = C_0 - C_m$	less than "n"
$C_{\rm m}$ $C_{\rm 0}$. $C_{\rm m}$	C_m – book value t the end of
	"m" years

	1
Sinking Fund Method	d – annual depreciation
	C _o – original cost
$d = (C_o - C_n) \qquad i$	n – useful life; years
$d = (C_o - C_n) \begin{bmatrix} \frac{i}{(1+i)^n - 1} \end{bmatrix}$	C_n – salvage value or the scrap
$\left(\begin{array}{c} \cdot \\ i \end{array}\right)$	value
	i – interest rate
	d – annual depreciation
	C_0 – original cost
$(1+i)^m-1$	n – useful life; years
	C_n – salvage value or the scrap
i i	value
D = (C C)	
$D_{\rm m} - (C_0 - C_{\rm n})$	D _m – accrued total depreciation
(1+1) -1	up to "m" years
$D_{m} = (C_{o} - C_{n}) \left(\begin{array}{c} \underbrace{-(1+i)^{m} - 1} \\ i \\ \hline \underbrace{-(1+i)^{n} - 1} \\ i \end{array} \right)$	
Declining Balance Method	d – annual depreciation
(Matheson Formula)	C _o – original cost
	n – useful life; years
$K = 1 - \sqrt[n]{C_n / C_o}$	C_n – salvage value or the scrap
	value
$d_m = K C_m - 1$	m – age of property at any time
	less than "n"
$C_{\rm m} = C_{\rm o} (1 - K)^{\rm m}$	C _m – book value t the end of
. ,	"m" years
$C_n = C_o (1 - K)^n$	
. ,	
Sum of the Years – Digits	C _o – original cost
(SYD) Method	n – useful life; years
(-)	C_n – salvage value or the scrap
$\nabla V_{\text{corn}} = n/2(n+1)$	value
$\sum Years = n/2(n+1)$	1 4140
Annual Depreciation = $(C_o - C_n)$	
$[n / \sum years]$	

Double Rate Declining Balance	C _o – original cost
_	n – useful life; years
$C_{\rm m} = C_{\rm o} (1 - 2 / n)^{\rm m}$	m – age of property at any time
	less than "n"
	C _m – book value t the end of
	"m" years
Service Output Method	T – total units of output produced during the life
	of property
$d_1 = \underline{C_o - C_n}$ T	Q _m – total units of output during year "m"
	d_1 – depreciation per unit of output
$D_{\rm m} = O_{\rm m} d$	
or	
$D_{m} = \underline{(C_{o} - C_{n})} Q_{m}$	
$C_m = C_o - D_m$	
Fixed Cost	C _F – fixed cost
rixeu Cost	v – variable cost / unit
$C_t = C_p + C_v$	D – units produced
$C_t - C_p + C_v$ $C_v = vD$	C _T – total cost
$C_{T} = C_{F} + vD$	C ₁ total cost
$C_{\Gamma} = C_{\Gamma} + VD$	
Profit	P – profit
P = TR - TC	TR – total revenue
	TC – total cost

Laws of Exponents

$$a^m\,.\;a^n=a^{m+n}$$

$$a^m \div a^n = a^{m-n}$$

$$= a^{o}$$

$$(a^m)^n = a^{mn}$$

$$(ab)^m = a^m b^m$$

$$(a/b)^m = a^m / b^m$$

If m > nm = n; $a \neq 0$

Rational Exponents

$$a^{1/n} = {}^{n}\sqrt{a}$$

$$a^{m/n} = {}^{n}\sqrt{a^{m}} \text{ or } ({}^{n}\sqrt{a})^{m}$$

Negative Exponents

$$a^{-m} = 1/a^{m} (a^{-m}/b) = (b/a)^{m}$$

$$1 = \underline{a^{m}}$$

Radicals

$$a^{1/n} = {}^n \sqrt{a}$$

$$a^{m/n} = {}^{n}\sqrt{a^{m}} \text{ or } ({}^{n}\sqrt{a})^{m}$$

A – is called the radicand m, n index (root)

Law of Radicals

$$\sqrt[n]{a^n} = a$$

$$\sqrt[m]{\sqrt[n]{\sqrt{1-a^2}}} \sqrt[mn]{a}$$

$$\sqrt[m]{a} \cdot \sqrt[m]{b} = \sqrt[m]{ab}$$

$$\frac{\sqrt[m]{a}}{\sqrt[m]{b}} = \sqrt[m]{a/b}$$

Complex Number

$$i = \sqrt{-1} = i^2 = -1$$

$$\sqrt[n]{a} = \sqrt[n]{a} (i)$$

n is even

Power of i

$$(i = \sqrt{-1})^2$$

$$i^2 = -1$$

Linear Equation in One Variable

 $a \neq 0$

$$ax + b = 0$$

Special Products

Factor Types

1. Common factor

$$a (x + y + z) = ax + ay + az$$

2. Square of binomial

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

3. Sum or difference of two numbers

$$(a + b) (a - b) = a^2 - b^2$$

4. Difference of two cubes

$$(x-y)(x^2 + xy + y^2) = x^3 - y^3$$

5. Sum of two cubes

$$(x + y) (x^2 - xy + y^2) = x^3 + y^3$$

6. Product of two similar numbers

$$(x + b) (x + d) = x^2 + (b + d) x + bd$$

$$(ax + b) (cx + d) = acx^{2} + (bc + ad)x + bd$$

Quadratic Trinomial

$$x^2 + (b+d)x + bd = (x+b)(x+d)$$

$$acx^2 + (bc + ad)x + bd = (ax+b)(ax+d)$$

Factoring of Polynomial Functions with Rational Roots

Form:

$$a_n x^n \ + a_{n\text{-}1} \, x^{n\text{-}1} + a_{n\text{-}2} \, x^{n\text{-}2} + \dots a x + a_0$$

Possible roots:

$$(r) = \pm \frac{\text{factor of } a_0}{\text{factor of } a_n}$$

Quadratic Equation in One Variable

Form:

$$Ax^2 + bx + c = 0$$

Method of Solutions:

If
$$b = 0$$
, $x = \pm \sqrt{-c/a}$

If factorable, use the theorem:

If
$$ab = 0$$
, $a = 0$ or $b = 0$

Note:

Avoid dividing an equation by variable so as not to loose roots.

Quadratic Formula	
$x = \underline{-b \pm \sqrt{b^2 - 4ac}}$ $2a$	
The Discriminant:	D = 0 Two identical and real
	roots
$D = b^2 - 4ac$	D > 0 Two distinct and real
	roots
	D < 0 Two complex conjugates
	roots
Sum and Products of Roots	
The sum $(X_s) = -b/a$	$X_1 + X_2$
The product $(X_p) = c/a$	X_1X_2

Linear Equation in Two Variables

Forms:

$$a_1 x + b_1 y + c_1 = 0$$

$$a_2 x + b_2 y + c_2 = 0$$

Method of Solution:

- 1. by elimination
- 2. by determinants

Linear Equation of Three Variables

$$a_1 x + b_1 y + c_1 z + d_1 = 0$$

$$a_2 x + b_2 y + c_2 z + d_2 = 0$$

$$a_3 x + b_3 y + c_3 z + d_3 = 0$$

Method of Solution:

- 1. by elimination
- 2. by determinants

Quadratic Equations in Two Variable One Linear and One Quadratic:

$$a_1x + b_1y = c_1$$

$$a_1x^{-2} + b_1y^2 = c_2$$

Two Formulas Used in Solving a Problem in Arithmetic Progression:

Last term (nth term)

$$a_n = a_1 + (n-1) d$$

Sum of all terms

$$S = n/2 (a_1 + a_n)$$

or
$$S = n/2 \left[2a_1 + (n-1) d \right]$$

	<u> </u>
Lairage	SR - space requirement, m ²
	N _a - number of animals
$SR = 2.23 N_a$: large/loose type	
$SR = 3.30 N_a$: large/tie-up type	
$SR = 0.70 N_a$: swine less than	
100kg	
$SR = 0.60 N_a$: swine more	
than100kg	
$SR = 0.56 N_a$: small animals	
one or that officer distributions	
Goat and Sheep (Solid Floor)	SR - space requirement, m ²
Court and Shoop (Some 11001)	N _a - number of animals
$SR = 0.80 N_a$: 35 kg animal	Tra Humber of unmark
Sit 0.00 Iva . 33 kg ummur	
$SR = 1.10 N_a : 50 \text{ kg animal}$	
$SR = 1.40 \text{ N}_a$: 70 kg animal	
Sit in it is a significant of the significant of th	
$SR = 0.45 N_a$: kid/lamb	
Sit of the right states	
$SR = 3.00 N_a$: buck/ram	
Sit 5.00 Iva . odok/Idiii	
Goat and Sheep (Slatted Floor)	SR - space requirement, m ²
Sout and sheep (statted 11001)	N _a - number of animals
$SR = 0.70 \text{ N}_a$: 35 kg animal	a lighter of williams
$SR = 0.90 \text{ N}_a : 50 \text{ kg animal}$	
$SR = 1.10 N_a : 70 \text{ kg animal}$	
$SR = 0.35 N_a$: kid/lamb	
$SR = 2.60 \text{ N}_a$: buck/ram	
2.00 Fig Odolividiii	

Goat and Sheep (Open Yard) $SR = 2.00 \text{ N}_a : 35 \text{ kg animal}$ $SR = 2.50 \text{ N}_a : 50 \text{ kg animal}$ $SR = 3.00 \text{ N}_a : 70 \text{ kg animal}$	SR - space requirement, m^2 N_a - number of animals
Goat and Sheep (Lactating) $SR = 1.30 \text{ N}_a : 5070 \text{ kg pregnant}$ $SR = 1.60 \text{ N}_a : \text{over } 70 \text{ kg pregnant}$ $SR = 2.00 \text{ N}_a : 5070 \text{ kg lactating}$ $SR = 2.30 \text{ N}_a : \text{over } 70 \text{ kg lactating}$	SR - space requirement, m^2 N_a - number of animals
Cattle Feed Lot $SR = 4.00 N_a : shed space$ $SR = 5.00 N_a : loafing area$	SR - space requirement, m^2 N_a - number of animals
Cattle Ranch (Holding Pen) $SR = 1.30 \text{ N}_a : \text{up to } 270 \text{ kg}$ $SR = 1.60 \text{ N}_a : 270\text{-}540 \text{ kg}$ $SR = 1.90 \text{ N}_a : \text{over } 540 \text{ kg}$	SR - space requirement, m^2 N_a - number of animals

Cattle Shed or Barn $SR = 1.00 \text{ N}_a$: calves up to 3 mo $SR = 2.00 \text{ N}_a$: calves 2-3 mo $SR = 3.00 \text{ N}_a$: calves 7 mo-1 yr $SR = 4.00 \text{ N}_a$: yearling 1-2 yr $SR = 5.00 \text{ N}_a$: heifer/steer 2-3 yr $SR = 6.00 \text{ N}_a$: milking and dry cow $SR = 10.00 \text{ N}_a$: cows in maternity stall	SR - space requirement, m^2 N_a - number of animals
Carabao Feedlot $SR = 4.00 N_a$	SR - space requirement, m^2 N_a - number of animals
Laying Hens (Growing 7-22 Weeks) $SR = 0.14 N_a : litter floor$ $SR = 0.06 N_a : slotted floor$ $SR = 0.07 N_a : slot-litter floor$	SR - space requirement, m ² N _a - number of birds
Laying Hens (Laying Beyond 22 Weeks) $SR = 0.17 N_a$: litter floor $SR = 0.09 N_a$: slotted floor $SR = 0.14 N_a$: slot-litter floor	SR - space requirement, m^2 N_a - number of birds

Broiler $SR = 0.0625 N_a : 4 \text{ week and below}$ $SR = 0.1250 N_a : above 4 \text{ weeks}$	SR - space requirement, m^2 N_a - number of birds
Swine (Group of Growing Swine) SR = 0.11 N _a : up to 10 kg SR = 0.20 N _a : 11 to 30 kg SR = 0.35 N _a : 21 to 40 kg SR = 0.50 N _a : 41 to 60 kg SR = 0.70 N _a : 61 to 80 kg SR = 0.85 N _a : 81 to 100 kg	SR - space requirement, m ² N _a - number of animals
Swine SR = 1.00 N _a : Gilts up to mating SR = 2.50 N _a : Adult pigs in group SR = 1.20 N _a : Gestating sows SR = 7.50 N _a : Boar in pens SR = 7.40 N _a : Lactating sows and liters – individual pen SR = 5.60 N _a : Lactating sows and liters - multisuckling groups SR = 1.80 N _a : Dry sows	SR - space requirement, m^2 N_a - number of animals

BEARINGS

Bearing Life	L – bearing life, million revolution
	C – basic dynamic capacity, N F – actual radial load, N
C	n-3 for ball bearing, and 3.33 for roller bearing
$L = \begin{bmatrix} \frac{C}{-} \end{bmatrix}^n$	a control of the cont
F	
Radial Load Acting on Shaft	F – radial force on the shaft, N
That I shall shall	P – power transmitted, kW
	K – drive tension factor, 1 for chain drive and gears; and
	1.5 for v-belt drive
$F = \frac{19.1 \times 10^6 \text{ P K}}{10^{-1000} \text{ P K}}$	D _p – pitch diameter of sheave, sprocket, etc, mm
$F = D_p N$	N – shaft speed, rpm
D _p IV	
Bearing Load in Belt	F _t – effective force transmitted by belt or chain, kgf-mm
	H – power transmitted, kW N – speed, rpm
974 000 H	r – effective radius of pulley or sprocket, mm
$F_t = \frac{774 \text{ doo } 11}{}$	or officerite radius of patiety of sprocket, film
N r	

BEARINGS

Actual Load Applied to Pulley shaft $L_a = \ f_b F_t$	$\begin{array}{c} L_a - \text{actual load applied to pulley shaft, kgf} \\ f_b - \text{belt factor, 2 to 2.5 for v-belt and 2.5 to 5 for} \\ \text{flat belt; 1.25 to 1.5 for chain drive} \\ F_t - \text{effective force transmitted by belt or chain,} \\ \text{kgf-mm} \end{array}$
Rating Life of Ball Bearing in Hours $L_h = 500 \left[\frac{10^6}{3 \times 10^4 \text{ N}} \right]^{0.33} \frac{\text{C}}{\text{P}}$	L _h – rating life of ball bearing, hours N - speed, rpm C - basic load rating, kgf P – bearing load, kgf
Rating Life of Roller Bearing in Hours $L_h = 500 \left(\frac{10^6}{3 \times 10^4 \text{ N}} \right)^{0.3} \frac{C}{P}$	L _h – rating life of roller bearing, hours N – speed, rpm C - basic load rating, kgf P – bearing load kgf

BIOGAS

Manure Production (Pig) $W_{m} = 2.20 \text{ N}_{a} \text{ N}_{d} : 3-8 \text{ mos}$ $W_{m} = 2.55 \text{ N}_{a} \text{ N}_{d} : 18-36 \text{ kg}$ $W_{m} = 5.22 \text{ N}_{a} \text{ N}_{d} : 36-55 \text{ kg}$ $W_{m} = 6.67 \text{ N}_{a} \text{ N}_{d} : 55-73 \text{ kg}$ $W_{m} = 8.00 \text{ N}_{a} \text{ N}_{d} : 73-91 \text{ kg}$	W_m – weight of manure produced, kg N_a - number of animals N_d - number of days
Manure Production (Cow) $W_m = 14.0 \text{ N}_a \text{ N}_d : \text{Feedlot}$ $W_m = 13.0 \text{ N}_a \text{ N}_d : \text{Breeding}$ $W_m = 7.5 \text{ N}_a \text{ N}_d : \text{Work}$	W_m – weight of manure produced, kg N_a - number of animals N_d - number of days
Manure Production (Buffalo) $W_m = 14.00 \text{ N}_a \text{ N}_d : \text{Breeding}$ $W_m = 8.00 \text{ N}_a \text{ N}_d : \text{Work}$	W_m – weight of manure produced, kg N_a - number of animals N_d - number of days
Manure Production (Horse) $W_m = 13.50 \ N_a \ N_d \ : Breeding \\ W_m = \ 7.75 \ N_a \ N_d \ : Work$	$W_{\rm m}$ – weight of manure produced, kg N_a - number of animals N_d - number of days
$\begin{aligned} & \textbf{Manure Production (Chicken)} \\ & W_m = 0.075 \ N_a \ N_d \ : Layer \\ & W_m = 0.025 \ N_a \ N_d \ : Broiler \end{aligned}$	W_m – weight of manure produced, kg N_a - number of birds N_d - number of days

BIOGAS

Volume of Mixing Tonk (150/	V_{mt} - volume of mixing tank, m ³
Volume of Mixing Tank (15%	, e ,
Freeboard)	w _m - daily manure production, kg/day-animal
	N _a - number of animals
$V_{mt} = W_m N_a T_m MR$	T_m – mixing time, day
	MR – mixing ratio, 1 for 1:1 and 2 for 1:2
Volume of Digester Tank (15%	V _{dt} - volume of digester tank, m ³
Freeboard)	w _m - daily manure production, kg/day-animal
,	N _a - number of animals
$V_{dt} = W_m N_a T_r MR$	T_r – retention time, day
dt Will va of over	MR – mixing ratio, 1 for 1:1 and 2 for 1:2
	1
Digester Dimension (Floating Type-	D _d - inner diameter, m
Cylindrical)	V _d - effective digester volume, m ³
Cymurcury	r – height to diameter ratio
D [(A C XI) / ()]1/3	=
$D_{d} = [(4.6 \times V_{d}) / (\pi \times r)]^{1/3}$	H _d - digester height, m
$H_d = r D_d$	
Digester Dimension (Floating Type-	S _d - inner side, m
Square)	V _d - effective digester volume, m ³
	r – height to side ratio
$S_d = [(1.15 \times V_d) / (r)]^{1/3}$	H _d - digester height, m
a [(a) (/)	
$H_d = r Sd$	
II(I I DU	

BIOGAS

Digester Dimension (Floating Type-	W _d - inner width, m
Rectangular)	V _d - effective digester volume, m ³
rectangular)	r – height to width ratio
$W_d = [(1.15 V_d) / (r p^2)^{1/3}]$	p - desired width and length proportion
W _d = [(1.13 V _d)/(1 p)	
II = "I	H _d - digester height, m
$H_d = r L_d$	
Gas Chamber (Floating-Type	D _g - inner diameter of gas chamber, m
Cylindrical)	D _d – inner diameter of digester, m
,	V _s - effective gas chamber volume, m ³
$D_g = (45 D_d - w) / 50$:	w – gas chamber wall thickness, cm
inner diameter	h – height of pyramidal roof, m
	H _s - height of gas chamber, m
$h = D_g Tan 9.5 / 2$:	H_p - desired pressure head, m
height of pyramidal roof	Tip desired pressure nead, in
neight of pyramidal roof	
$H_s = 1.15[\{4 V_s / \pi D_s\} + H_p]$:	
height of gas chamber	
neight of gas chamber	
Gas Chamber (Floating-Type	L _g - inner length of gas chamber, m
Square/Rectangular)	W _g - inner width of gas chamber, m
- ,	L _d – inner length of digester, m
$L_g = (45 L_d - w) / 50$:	W _d – inner width of digester,m
inner length	V _s - effective gas chamber volume, m ³
	w – gas chamber wall thickness, cm
$W_g = (45 L_d - W) / 50$:	h – height of pyramidal roof, m
inner width	H _g - height of gas chamber, m
	H _p - desired prressure head, m
$h = W_g Tan 9.5 / 2$:	r ,
height of pyramidal roof	
C - ry " " "	
$H_g = 1.15[\{V_g/L_gW_g\} + H_p]$:	
height of gas chamber	
noight of Sub offunition	

BIOMASS COOKSTOVE

Design Power	P _d - design power, KCal/hr
Design I ower	P _c - chracoal power, KCal/hr
$\mathbf{p} = 0.7 (\mathbf{p} + \mathbf{p})$	* '
$P_{\rm d} = 0.7 (P_{\rm c} + P_{\rm v})$	P _v - max volatile, KCal/hr
Power Output	P _o - power output, KCal/hr
	F _c - Fuel charges, kg
$P_o = F_c H_f / T_b$	H _f - heating value of fuel; KCal/kg
	T _b - total burning time, hr
Burning Rate	BR - burning rate, kg/hr
	P _o - power output, KCal/hr
$BR = P_o / H_f$	H _f - heating value of fuel; KCal/kg
Fuel Consumption Rate	FCR - fuel consumption rate, kg/hr
*	W _{fc} - Weight of fuel consumed, kg
$FCR = W_{fc} / T_{o}$	T_0 – operating time, hr
ic c	
Power Density	PD - power density, kg/hr-m ²
January Committee of the Committee of th	FCR - fuel consumption rate, kg/hr
$PD = FCR / A_g$	A_g - area of grate, m^2
	3-1g
Height of Fuel Bed	H _{fb} - height of the fuel bed, m
8	F _c - fuel charges, kg
$H_{fb} = F_c / (p \rho_f A_b)$	p - packing density, decimal
10 - C · (P P10)	ρ_f - density of fuel, kg/h ³
	A_b - area of fuel bed, m^2
Area of the Fuel Bed	A_{fb} - area of the fuel bed, m ²
The of the fuel beu	P _d - design power, KCal/hr
$A_{fb} = P_d / PD$	PD - power density, KCal/hr-m ²
110 10/10	1D power density, Real/in in

BIOMASS COOKSTOVE

Flame Height	FH – flame height, mm
	C – grate constant, 76 mm/KW for fire with grate,
$FH = C P^{2/5}$	and 110 mm/KW for fire without grate
	P – power output, KCal/hr
Cooking Time	CT - cooking time, sec
2.20	M _f - mass of food, kg
$CT = 550 M_f^{0.38}$	
Maximum Power	P _{max} - maximum power, KCal/hr
	M _f - mass of food, kg
	C _p - specific heat of food, KCal/kg-C
$M_f C_p (T_f - T_i)$	T _f - final temperature of food, C
$P_{max} =$	T _i - initial temperature of food, C
$T_c \xi_t$	T _c - cooking time, hr
	ξ - thermal efficiency of the stove, decimal
Thermal Efficiency	ξ_t - thermal efficiency, %
	M _w – mass of water, kg
	C _p - specific heat of water, 1 KCal/kg-C
$M_w C_p (T_f - T_i) + W_e H_v$	T _f - final temperature of water, C
$\xi_t = \frac{}{} x 100$	T _i - initial temperature of water, C
$ m W_{FC}~H_{VF}$	W _e - weight of water evaporated, kg
	H _v – heat of vaporization of water, 540 KCal/kg
	W _{FC} – weight of fuel consumed, kg
	H _{VF} – heating value of fuel, KkCal/kg

BIOMASS FURNACE

Sensible Heat	Q _s - sensible heat, KCal
	M - mass of material, kg
$Q_s = M C_p (T_f - T_i)$	C _p – specific heat of material, KCal/kg-C
	T_f – final temperature of material, C
	T _i - initial temperature of material, C
Latent Heat of Vaporization	Q ₁ - latent heat of vaporization, KCal/hr
	m - mass of material, kg
$Q_1 = m H_{fg}$	H _{fg} - heat of vaporization of material, KCal/kg
Design Fuel Consumption Rate	FCR _d - design fuel consumption rate, kg/hr
	Q _r - heat required for the system, KCal/hr
$FCR_d = Q_r / (HVF \xi_t)$	HVF – heating value of fuel, KCal/kg
	ξ_t - thermal efficiency of the furnace, decimal
Actual Fuel Consumption Rate	FCR _a - fuel consumption rate, kg/hr
	W _{fc} - Weight of fuel consumed, kg
$FCR_a = W_{fc} / T_o$	T_0 – operating time, hr
Fuel Consumption Rate for Rice Husk	FCR – fuel consumption rate, kg/hr
Fueled Inclined Grate Furnace with	BR – burning rate, 40-50 kg/hr-m2
Heat Exchanger	Ag – grate area, m2
	ξf – furnace efficiency, 50 to 70%
$FCR = (1000 BR x Ag) / (\xi f x \xi he)$	ξhe – heat exchanger efficiency, 70-80%
Fuel Consumption Rate for Rice Husk	FCR – fuel consumption rate, kg/hr
Fueled Inclined Grate Furnace	BR – burning rate, 40-50 kg/hr-m2
without Heat Exchanger	Ag – grate area, m2
	ξf – furnace efficiency, 50 to 70%
$FCR = (100 BR x Ag) / \xi f$	

BIOMASS FURNACE

Duyming Date	DD learning notes leg/len m ²
Burning Rate	BR - burning rate, kg/hr-m ²
	FCR – fuel consumption rate, kg/hr
$BR = FCR / A_g$	A _g - area of grate; m ²
	2
Power Density	PD - power density, kg/hr-m ²
	FCR - fuel consumption rate, kg/hr
$PD = FCR / A_g$	A _g - area of grate, m ²
Area of the Fuel Bed	A_{fb} - area of the fuel bed, m^2
	P _d - design power, KCal/hr
$A_{fb} = P_d / BR$	BR - burning rate, KCal/hr-m ²
	-
Air Flow Rate Requirement	AFR - airflow rate, kg/hr
•	FCR - fuel consumption rate, kg/hr
$AFR = FCR S_a$	S _a - stoichiometric air requirement, kg air per kg fuel
<u> </u>	
Thermal Efficiency	ξ_t - thermal efficiency, %
•	Q _s – heat supplied, KCal/hr
Q_{s}	F _{CR} – fuel consumption rate, kg/hr
$\xi_t = \frac{Q_s}{100}$	H _{VF} – heating value of fuel, KCal/kg
F_{CR} H_{VF}	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CR VI	
Burning Efficiency	ξ _b - burning efficiency, %
	H _v - heating value of fuel, KCal/kg
$\xi_b = \frac{H_v - H_r}{H_v} \times 100$	H _r - heating value of ash residue, KCal/kg
$\varepsilon_{\rm h} = \frac{1}{100} \times 100$	121 Housing value of abilitolitate, from ing
H	
IIV	

BOARDER IRRIGATION

Maximum Stream Size per Foot Width of Boarder Strip $Q_{max} = 0.06 \ S^{0.75}$	Q max - maximum stream size per foot of width of the boarder strip, cfs S - slope, %
Minimum Stream size per Foot	Q _{min} - minimum stream size per foot of width of
Width of Boarder Strip	the boarder strip, cfs
$Q_{min} = 0.004 \text{ S}^{0.5}$	S - slope, %

CHAIN TRANSMISSION

0 1 131 1 000 1	NT 1 0.1:
Speed and Number of Teeth	N_r – speed of driver sprocket, rpm
	N_n – speed of driven sprocket, rpm
$N_r T_r = N_n T_n$	T_r – no. of teeth of driver sprocket
	T_n – no. of teeth of driven sprocket
Length of Chain	L – chain length, pitches
	C – center distance between sprockets,
$T_2 + T_1$ $T_2 - T_1$	pitches
L = 2 C + + +	T_2 – no. of teeth on larger sprocket
$L = 2 C + \left(\frac{T_2 + T_1}{2}\right) + \left(\frac{T_2 - T_1}{4 \pi^2 C}\right)$	T_1 – no. of teeth on smaller sprocket
Length of Driving Chain	L – length of chain in pitches
	C _p - center to center distances in pitches
T t $[T-t]$	T - no. of teeth on larger sprocket
$L = 2C_p + - + - + $	t - no. of teeth on smaller sprocket
$L = 2C_p + \frac{T}{2} + \frac{t}{2} + \left(\frac{T-t}{2\pi}\right)\left(\frac{1}{C_p}\right)$	1

CHAIN TRANSMISSION

D'ALD' A CC LA	DD ', 1 1' , C 1 , ' 1
Pitch Diameter of Sprocket	PD – pitch diameter of sprocket, inches
	P – pitch, inch
P	N _t – number of teeth of sprockets
PD =	
sin (180/N _t)	
Chain Pull	CP – chain pull, kg
	P – chain power, watts
CP = 1000 (P / V)	V – chain velocity, m/s
,	3,
Chain Speed	V – chain speed, m/s
	p – chain pitch, in
V = p T N / 376	T – number of teeth of sprocket
•	N – sprocket speed, rpm
	r -r
Speed Ratio	R _s – speed ratio
_	T_n – driven sprocket, inches
$R_s = T_n / T_r$	T _r – driver sprocket, inches
3 11 1	1
Design Power	DP - design power, Watts
-	P _t - power to be transmitted, Watts
	S - service factor, 1.0 to 1.7
$DP = P_t S / MSF$	MSF – multiple strand factor, 1.7 to 3.3 @ 2 to 4 strands
	instripte straite factor, 1.7 to 3.3 to 1 straites

CHAIN TRANSMISSION

Power Rating Required	PR - Power rating required, Watts
8 1	DP - design power, Watts
DP DL	DL - design life, hours
PR =	
Horsepower Capacity (At Lower Speed)	HP – horsepower capacity, hp
$HP = 0.004 T_1^{1.08} N_1^{0.9} P^3 - 0.007 P$	T_1 – number of teeth of smaller sprocket N_1 - speed of smaller sprocket, rpm P – chain pitch, inches
Horsepower Capacity (At Higher Speed)	HP – horsepower capacity, hp
HP = $\frac{1700 \text{ T}_1^{-1.5} \text{ P}^{-0.8}}{N_1^{-1.5}}$	T_1 – number of teeth of smaller sprocket N_1 - speed of smaller sprocket, rpm P – chain pitch, inches
Center Distance $C = \frac{P}{8} [2L_p - T - t]$	C - center distance in mm P - pitch of chain in mm L _p - length of chain in pitches T - number of teeth in large sprocket t - number of teeth in small sprocket
+ $\sqrt{(2L_p - T- t)^2 - 0.810 (T-t)^2}$	•

CONSERVATION STRUCTURES, DAMS AND RESREVIOR

Capacity of drop spillway $q = 0.55 \text{ C L h}^{3/2}$	q – discharge, cubic meter per second C – weir coefficient L – weir length, meter h – depth of flow over the crest, meter
Total width of the dam	W – top width, meters
W = 0.4 H + 1	H – maximum height of embankment, meters
Wave height	h – height of the wave from through to crest under ,maximum wind velocity, meters
$H = 0.014 (D_f)^{1/2}$	D_f – fetch or exposure, meters
Compaction and settlement	V = total in-place volume, m ³
	V_s = volume of solid particles, m^3
$V = V_s + V_o$	V_o = volume of voids, either air or water, m ³

CONVEYANCE CHANNEL

Continuity Equation	Q - discharge, m ³ /sec
	A - cross-sectional area of the channel, m2
Q = AV	V – velocity of water, m/sec
Manning Equation	V – velocity, m/sec
	n – Manning's coefficient, 0.010 to 0.035
	R – hydraulic radius, m
$V = (1.00 / n) R^{2/3} S^{1/2}$	S – slope of water surface
Chezy Equation	V – flow velocity
	C - coefficient of roughness, 50 to 180
$V = C (RS)^{\frac{1}{2}}$	R – hydraulic radius, m
	S – slope of water surface, decimal
Hydraulic Radius	R – hydraulic radius, m
	A – cross-sectional area of flow, m ²
R = A / P	P – wetted perimeter, m
Best Hydraulic Cross-Section	b - bottom width of channel, m
	d – depth of water in the canal, m
$b = 2 d \tan (\theta/2)$	θ - angle between the side slope and the horizontal

CONVEYANCE CHANNEL

Cross-Sectional Area of Channel	A - cross sectional area, m ²
	b – base width of the channel, m
$A = b d + z d^2$: Trapezoidal	d – depth of water, m
$A = z d^2$: Triangular	z - canal slope h/d, decimal
A = 2/3 + t d: Parabolic	t - top width, m
Wetted Perimeter of Channel	WP - wetted perimeter, m
wetted Fernneter of Channel	b – base width of the channel, m
WP = b + 2d $(z^2 + 1)^{\frac{1}{2}}$:	d – depth of water, m
Trapezoidal	z - canal slope h/d, decimal
Trapozorani	t - top width, m
WP = 2d $(z^2 + 1)^{\frac{1}{2}}$:	, v v v v v v v v v v v v v v v v v v v
Triangular	
WP = $t + (8 d^2 / 3t)$:	
Parabolic	
Top Width	t - top width, m
	b – base width of the channel, m
t = b + 2 dz: Trapezoidal	d – depth of water, m
t = 2 dz : Triangular	z - canal slope h/d, decimal
t = A/(0.67 d): Parabolic	A - cross sectional area, m ²
	3,
Discharge (Float Method)	Q - discharge, m ³ /s
0 0 1 1	C – coefficient, 2/3
$Q = C A V_{max}$	A - cross-sectional area of the stream, m ²
	V _{max} - average maximum velocity of stream, m/s

CORN SHELLER

Kernel-Ear Corn Ratio	R – grain ratio, decimal
	W _k – weight of kernel, grams
$R = (W_k / W_{ec})$	W _{ec} – weight of ear corn, grams
, , ,	
Actual Capacity	C _a – actual capacity, kg/hr
	W _s -weight of shelled kernel, kg
$C_a = W_s / T_o$	T _o – operating time, hr
Corrected Capacity	C _c – corrected capacity, kg/hr
	MC _o – observed moisture content, %
100 - MC _o	MC _r – reference MC, 20%
$C_c = x P C_a$	P – kernel purity, %
100 - MC _r	C _a – actual capacity, kg/hr
Purity	P – purity, %
	W _u – weight of uncleaned kernel, grams
$P = (W_c/W_u) 100$	W _c – weight of cleaned kernel, grams
Total Losses	L _t – total losses, kg
	L _b – blower loss, kg
$L_{t} = L_{b} + L_{s} + L_{u} + L_{sc}$	L _s – separation loss, kg
	L _{sc} – scattering loss, kg
	L _u – unthreshed loss, kg

CORN SHELLER

$\xi_s = {}$ x 100	$\begin{array}{l} \xi_s - \text{shelling efficiency,\%} \\ W_c - \text{weight of clean shelled kernel, kg} \\ L_b - \text{blower loss, kg} \\ L_s - \text{separation loss, kg} \\ L_{sc} - \text{scattering loss, kg} \\ L_u - \text{unthreshed loss, kg} \end{array}$
Fuel Consumption $F_c = F_u / t_o$	F_c – fuel consumption, Lph F_u - amount of fuel used, liters T_o – operating time, hrs
Shelling Recovery $S_r = \frac{W_c}{W_c + L_b + L_s + L_u + L_s} \times 100$	$S_r - \text{threshing recovery, \%} \\ W_c - \text{weight of clean shelled kernels, kg} \\ L_b - \text{blower loss, kg} \\ L_s - \text{separation loss, kg} \\ L_{sc} - \text{scattering loss, kg} \\ L_u - \text{unthreshed loss, kg} \\$
Cracked Kernels $C_k = N_{ck} 100 / 100 \text{ kernel sample}$	C_k – percentage cracked kernel, % N_{ck} – number of cracked kernels
Mechnically Damaged Kernel $D_k = N_{dk} \ 100 \ / \ 100 \ kernel \ sample$	D_k- percentage damage kernel, % $N_{dk}-$ number of damaged kernels

COST-RETURN ANALYSIS

Investment Cost	IC - investment cost, P
	EC - equipment cost, P
IC = MC + PMC	PMC – prime mover cost, P
	,
Total Fixed Cost	FC – total fixed cost, P/day
	D - depreciation, P/day
$FC_t = D + I + RM + i$	I - interest on investment, P/day
	RM - repair and maintenance, P/day
	i - insurance, P/day
Total Variable Cost	VC _t - total variable cost, P/day
	L - labor cost, P/day
$VC_t = L + F + E$	F – fuel cost, P/day
	E – electricity, P/day
Total Cost	TC – total cost, P/day
	FC _t – total fixed cost, P/day
$TC = FC_t + VC_t$	VC _t - total variable cost, P/day
Operating Cost	OC - operating cost, P/ha or P/kg
	TC - total cost, P/day
OC = TC / C	C - capacity, Ha/day or Kg/day

COST-RETURN ANALYSIS

Depreciation (Staight Line)	D - depreciation, P/day
	IC - investment cost, P
IC - 0.1 IC	LS – life span, years
D =	
365 LS	
	N
Interest on Investment	I - interest on investment, P/day
I D IC / 265	R _i - interest rate, 0.24/year
$I = R_i IC / 365$	IC – investment cost, P
Repair and Maintenance	RM – repair and maintenance, P/day
1	R _{rm} - repair and maintenance rate, 0.1/year
$RM = R_{rm} IC / 365$	IC - investment cost, P
	,
Insurance	i - insurance, P/day
	R _i - insurance rate, 0.03/year
$i = R_i IC / 365$	IC - investment cost, P
Labor Cost	L - labor cost, P/day
	NL – number of laborers
$L = NL S_a$	S _a – salary, P/day
Fuel Cost	F - fuel cost, P/day
	W _f - weight of fuel used, kg
$F = W_f C_f$	C _f - cost of fuel, P/kg

COST-RETURN ANALYSIS

Electricity	E – cost of electricity, P/day
	E _c - electrical consumption, KW-hr
$E = E_c C_e$	C _e – cost of electricity, P/KW-hr
Net Income	NI - net income, P/yr
	CR – custom rate, P/ha or P/kg
NI = (CR - OC) C OP	OC – operating cost, P/ha or P/kg
	C - capacity, Ha/day or Kg/day
	OP – operating period, days/year
Payback Period	PBP – payback period, years
	IC - investment cost, P
PBP = IC / NI	NI - net income, P/yr
	·
Benefit Cost Ratio	BCR - benefit cost ratio, decimal
	NI - net income, P/year
BCR = NI / (TC OP)	TC – total cost, P/day
	OP – operating period, days per year
Return on Investment	ROI - return on investment, %
	TC - total cost, P/year
ROI = (TC/NI)100	NI - net income, P/year
	, •

CYCLONE SEPARATOR

Diameter of Cyclone Separator	D _c - diameter of cyclone separator, m Q - airflow, m ³ /hr
$D_c = (Q / 0.1 V_t)^{0.5}$	V _t – velocity of air entering the cyclone, m/s
Pressure Draft of the Cyclone	P_d - pressure drop, mm D_a - air density, 1.25 kg/m ³ V_t - velocity of air entering the cyclone, m/s
$P_{d} = \frac{6.5 D_{a} V_{t}^{2} A_{d}}{D_{s}}$	A_d – inlet area of the duct, m^2 D_s – diameter of separator, m
Cyclone Cylinder Height (High Efficiency)	H_{cy} – cylinder height, m D_c - cyclone diameter, m
$H_{cy} = 1.5 D_{c}$	
Inverted Cone Height (High Efficiency) $H_{co} = 2.5 D_{c}$	H_{co} - cone height, m D_c - cyclone diameter, m
Air Duct Outlet Diameter (High Efficiency)	D_{o} - air duct outlet diameter, m D_{c} - cyclone diameter, m
$D_o = 0.5 D_c$	

CYCLONE SEPARATOR

Air Duct Outlet Lower Height (High	HDO ₁ - lower height of air duct outlet, m
Efficiency)	D _c - cyclone diameter, m
$HDO_1 = 1.5 D_c$	
Air Duct Outlet Upper Height (High	HDO _u - upper height of air duct outlet, m
Efficiency)	D _c - cyclone diameter, m
$HDO_u = 0.5 D_c$	
Width of the Inlet Rectangular Square Duct	WD – width of the inlet duct, m
(High Efficiency)	D _c – cyclone diameter, m
$WD = 0.2 D_c$	
$WD = 0.2 D_c$	
Height of the Inlet Rectangular Square Duct	HD – height of the inlet duct, m
(High Efficiency)	D _c – cyclone diameter, m
$HD = 0.5 D_{c}$	
·	
Cylinder Height (Medium Efficiency)	H _{cy} – cylinder height, m
$H_{cv} = 1.5 D_c$	D _c - cyclone diameter, m
,	
Inverted Cone Height (Medium Efficiency)	H _{co} - cone height, m
$H_{co} = 2.5 D_c$	D _c - cyclone diameter, m

CYCLONE SEPARATOR

Air Duct Outlet Diameter (Medium	D _o - air duct outlet diameter, m
Efficiency)	D _c - cyclone diameter, m
$D_{o} = 0.75 D_{c}$	
Air Duct Outlet Lower Height (Medium	HDO ₁ - lower height of air duct outlet, m
Efficiency)	D _c - cyclone diameter, m
$HDO_1 = 0.875 D_c$	
$ DO = 0.875 D_{\rm c}$	
Air Duct Outlet Upper Height (Medium	HDO _u - upper height of air duct outlet, m
Efficiency)	D _c - cyclone diameter, m
• ,	,
$HDO_u = 0.5 D_c$	
Weddle Edle Lilet Deeder and Commen	WD width of the inlet dust m
Width of the Inlet Rectangular Square	WD – width of the inlet duct, m
Duct (Medium Efficiency)	D _c – cyclone diameter, m
$WD = 0.375 D_c$	
W D 0.575 Be	
Height of the Inlet Rectangular Square	HD – height of the inlet duct, m
Duct and Upper Cyclone Cylinder	D _c – cyclone diameter, m
(Medium Efficiency)	
$HD = 0.75 D_{c}$	

DIFFERENTIAL CALCULUS

$$\frac{d}{dx}(u+v) = \underline{du} + \underline{dv}$$

$$\frac{d}{dx}u/v = \underline{vdu} - \underline{udv}$$

$$\frac{d}{dx}u/v = \underline{vdu} - \underline{udv}$$

$$\frac{d}{dx}u.v = \underline{vdu} + \underline{udv}$$

$$\frac{d}{dx}u.v = \underline{vdu} + \underline{udv}$$

$$\frac{d}{dx} = \underline{udv}$$

$$\underline{dx}$$

$$\underline{du} = \underline{udv}$$

$$\underline{du}$$

$$\underline{du} = \underline{udv}$$

$$\underline{du}$$

$$\underline{du} = \underline{udv}$$

$$\underline{du}$$

$$\underline$$

$$\frac{d}{dx} (\log 10^{u}) = 0.4343 \cdot \frac{du/dx}{u}$$

$$= \frac{du}{dx} \cdot \log 10^{e}$$

$$u$$

$$= \frac{d}{dx} \cdot \log 10^{e}$$

$$u$$

$$= \frac{d}{dx} \cdot \log 10^{e}$$

$$\frac{d}{dx} \cdot \log 10^{e}$$

$$\frac{d}$$

DIFFERENTIAL CALCULUS

$$\underline{\frac{d}{dx}(\arctan u) = \underline{\frac{du}{dx}}{1 + u^2}}$$

$$\frac{d (arcsec u) = \frac{du/dx}{u \sqrt{u^2-1}}$$

$$\underline{d}(\operatorname{arccsc} u) = \underline{-du/dx}$$

$$dx \qquad u \sqrt{u^2-1}$$

$$\underline{d} (\operatorname{arccot} u) = \underline{-du/dx}$$

$$dx \qquad 1 + u^2$$

$$\frac{-d}{dx} (\log a^u) = \frac{du/dx}{du} \cdot \log a^e$$

 $\frac{d(\csc h u) = -\csc h u \cot h u.du/dx}{dx}$

 $\frac{d (\sec h u) = -\sec h u \tan h u.du/dx}{dx}$

$$\frac{d(\cot h u) = -\csc h^2 u.du/dx}{dx}$$

$$-d - (\arccos u) = -du/dx$$

$$dx \qquad \sqrt{1-u^2}$$

$$x^{m/n} = (^n \sqrt{x})^m$$

$$\frac{d(\sin h u) = \cos h u.du/dx}{dx}$$

$$\frac{d(\cos h u) = \sin h u.du/dx}{dx}$$

$$\frac{d (\tan h u) = \sec h^2 u.du/dx}{dx}$$

DRIP IRRIGATION

Maximum Depth of Irrigation	I _{dn} - maximum net depth of each irrigation application,
	mm
$I_{dn} = D_s [(F_c - W_p) / 100] D_d P$	D _s - depth of soil, m
	F _c - field capacity, %
	W _p - wilting point, %
	D _d - portion of the available moisture allowed to
	deplete, mm
	P - area wetted, % of total area
Irrigation Interval	I _i - irrigation interval, days
	I _d - gross depth of irrigation, mm
$I_i = [I_d TR EU] / 100T$	TR - ratio of transpiration to application, 0.9
	EU - emission uniformity, %
T = ET (min of PS/85)	ET - conventionally accepted consumptive use rate of
	crop, mm/day
	PS - area of the crop as percentage of the area, %
Gross Depth of Irrigation	I _d - gross depth of irrigation, mm
	I_{dn} - maximum net depth of each irrigation application,
$I_d = 100 I_{dn} / [TR EU]$	mm
	TR - ratio of transpiration to application, 0.9
	EU - emission uniformity, %

DRIP IRRIGATION

Average Emitter Discharge $Q_a \ = \ k \ [I_d \ S_e \ S_l] \ / \ I_t$	Q _a - emitter discharge, m ³ /hr k - constant, 1 for metric unit I _d - gross depth irrigation, m S _e - emitter spacing on line, m S ₁ - average spacing between lines, m I _t - operational unit during each of irrigation cycle,
Lateral Flow Rate	hrs Q ₁ - lateral flow rate, lps
$Q_l = 3600 \ N_e \ Q_a$	N_e - number of emitters on laterals Q_a - emitter discharge, m^3/hr

Power (DC)	P – power, Watts
	V – voltage, volt
P = VI	I – current, Ampere
	r
Power (AC)	P – power, volt-ampere
	V – voltage, volt
P = VI	I – current, Ampere
	•
Power (AC)	P – power, Watts
	V – voltage, volt
$P = V I p_f$	I – current, Ampere
	p _f – power factor
Ohms Law (DC)	I – current, Ampere
	V– voltage, volt
I = V/R	R – resistance, ohms
Ohms Law (AC)	I – current, Ampere
	V – voltage
I = V/Z	Z – impedance
Power	P – power, Watts
n x2 n	I – current, Ampere
$P = I^2 R$	R – resistance, ohms
	D W.
Power	P – power, Watts
D 1/2 / D	V – voltage, volts
$P = V^2 / R$	R – resistance, ohms

Resistance	P – power, Watts
2	I – current, Ampere
$R = P / I^2$	R – resistance, ohms
Resistance	P – power, Watts
2	V – voltage, volts
$R = V^2 / P$	R – resistance, ohms
Voltago	V voltage valt
Voltage	V – voltage, volt P – power, Watts
V = P / I	I – current, Ampere
v — r / 1	1 – current, Ampere
Voltage (Series)	V _t – total voltage, volt
	V ₁ – voltage 1, volt
$V_t = V_1 + V_2 + V_3 \dots$	V_2 – voltage 2, volt
	V ₃ – voltage 3, volt
Resistance (Series)	R _t – total resistance, ohms
resistance (series)	R ₁ – resistance 1, ohms
$R_t = R_1 + R_2 + R_3 \dots$	R ₂ – resistance 2, ohms
	R ₃ – resistance 3, ohms
	3
Current (Series)	I _t – total current, ampere
	I ₁ – current 1, Ampere
$I_t = I_1 = I_2 = I_3$	I ₂ – current 2, Ampere
	I ₃ – current 3, Ampere

Voltage (Parallel)	V_t – total voltage, volt V_1 – voltage 1, volt
$\mathbf{V}_{t} = \mathbf{V}_1 = \mathbf{V}_2 = \mathbf{V}_3$	V_1 voltage 1, volt V_2 – voltage 2, volt V_3 – voltage 3, volt
	-
Resistance (Parallel)	R _t – total resistance, ohms
1	R ₁ – resistance 1, ohms
$R_t = $	R ₂ – resistance 2, ohms
$1/R_1 + 1/R_2 + 1/R_3$	R ₃ – resistance 3, ohms
Current (Parallel)	I _t – total current, Ampere
	I_1 – current 1, Ampere
$I_t = I_1 + I_2 + I_3$	I ₂ – current 2, Ampere
	I ₃ – current 3, Ampere
Energy	E – energy, Watt-hour
	P – power, Watts
E = P T	T – time, hour

Current (Parallel)	I _t – total current, Ampere
Current (Faranei)	•
T T + T + T	I_1 – current 1, Ampere
$I_t = I_1 + I_2 + I_3$	I ₂ – current 2, Ampere
	I ₃ – current 3, Ampere
Energy	E – energy, Watt-hour
	P – power, Watts
E = P T	T – time, hour
Power Factor	p _f – power factor
	E – voltage, volt
P_r EI cos θ	I – current, ampere
$p_{f} = \frac{P_{r}}{P_{a}} = \frac{E I \cos \theta}{E I}$	P _r – real power, watts
P _a E I	P _a – apparent power, watts
u	R – resistance, ohms
$= \cos R/Z$	Z – impedance, ohms
000 00.	1 /
KVA (Single Phase Circuit)	KVA – kilovolt ampere
,	E – voltage, volt
ΕΙ	I – current, ampere
$KVA = \frac{E I}{}$, 1
1000	
KVA (Three-Phase Circuit)	KVA – kilovolt ampere
, (E – voltage, volt
1.732 E I	I – current, ampere
KVA =	- · · · · · · · · · · · · · · · · · · ·
1000	
Horsepower Output (Single-Phase)	HP – power output, hp
,	E – voltage, volt
η Ι Ε p _f	I – current, amperes
$HP = \frac{1}{1}$	η - efficiency, decimal
746	p_f – power factor, decimal
	ri r

ELECTRIC MOTOR

Horsepower Output (Three-Phase)	HP – power output, hp
The state of the s	E – voltage, volt
n I E p _f	I – current, amperes
$HP = \sqrt{3} - \frac{\eta I E p_f}{}$	η - efficiency, decimal
746	p _f – power factor, decimal
	FI F
Power in Circuit (Single-Phase)	P – power, watts
, G	E – voltage, volts
P = E I	I – current, ampere
Power in Circuit (Three Phase)	P – power, watts
	E – voltage, volts
$P = \sqrt{3} E I$	I – current, ampere
KVA (Single-Phase Circuit)	KVA – kilovolt ampere
	E – voltage, volt
ΕΙ	I – current, ampere
KVA =	
1000	
KVA (Three-Phase Circuit)	KVA – kilovolt ampere
	E – voltage, volt
1.732 E I	I – current, Ampere
KVA =	
1000	
Horsepower Output (Single-phase)	HP – power output, hp
	E – voltage, volt
η I E p _f	I – current, amperes
HP =	η - efficiency, decimal
746	p _f – power factor, decimal

ELECTRIC MOTOR

Housenewey Outnut (Thuse phase)	IID nower output he
Horsepower Output (Three-phase)	HP – power output, hp
	E – voltage, volt
$_{\underline{\hspace{1cm}}}$ η I E p_{f}	I – current, amperes
$HP = \sqrt{3} - \frac{\eta I E p_f}{}$	η - efficiency, decimal
746	p _f – power factor, decimal
Slip (Three-Phase Motor)	S - slip, decimal
	Ns – motor synchronus speed, rpm
S = [Ns - N] / Ns	N – actual motor speed, rpm
Power in Circuit (Single-Phase)	P – power, Watts
, G	E – voltage, volts
P = E I	I – current, Ampere
Power in Circuit (Three-Phase)	P – power, Watts
, , , , , , , , , , , , , , , , , , ,	E – voltage, volts
$P = \sqrt{3} E I$	I – current, Ampere
Rotr Speed (Synchronous Motor)	Ns – rotor speed, rpm
, , ,	F - frequency of stator volatge, hertz
Ns = 120 [f/P]	P-n umber of pole
	1
Motor Size to Replace Engine	MHP - motor power, hp
	EHP - engine power, hp
MHP = EHP 2/3	
Motor Size to Replace Human	MHP - motor power, hp
•	N _H - number of human
$MHP = N_H 1/4$	
n	

ELECTRIFICATION

Energy Loss in Lines	L _e – energy loss, KW-hr
	V_1 - voltage loss in line, volt
$V_1 I T_0$	I - current flowing, Amp
I =	T_0 - operating time, hr
$L_e = \frac{V_1 I T_o}{1000}$	To operating time, in
1000	
Area Circular Mill	A _{cm} - area, circular mill
	D - diameter, mill or 1/1000 of an inch
$A_{cm} = D^2$	
- Cili	
Energy Consumption (Disk Meter)	EC = electrical consumption, KW-hr
(K _h - meter disk factor, 2.5
60 K _b , D _{rov}	D _{rev} – number of revolutions, rev
$EC = \frac{60 \text{ K}_{h} \text{ D}_{rev}}{}$	T _c - counting period, min
1000 t _c	1° counting period, min
1000 tc	
Minimum Number of Convenience	N _{co} - minimum number of convenience outlet,
Outlet	pieces of duplex receptacle
	P _f - floor perimeter, ft
$N_{co} = P_f / 20$	Tr moor permieter, it
11, 20	
No. of Branch Circuit (15-amp)	N _{bc} - number of branch circuit
(co anap)	A_f - floor area, ft^2
$N_{bc} = A_f / 500$	NO_{gp} - number of general outlet
111 / 500	gp nonitor of goneral outlot
$N_{bc} = NO_{gp} / 10$	
110c 110gp / 10	

ELECTRIFICATION

N CD 1 C' 1/ (20	XI 1 01 1 1 1
No. of Branch Circuit (20	N _{bc} - number of branch circuit
Amp)	NO _{sa} - number of small appliance outlet
$N_{bc} = NO_{sa} / 8$	
Resistance of Copper Wire	R - resistance in wire, ohms
resistance of copper vine	L – length of wire, ft
100 1	S ,
10.8 L	A - cross sectional area of wire, cir mil
R =	
A	
Wire Size Selection	A - area of wire, circular mill
	N _w - number of wires
	L - length of wire, ft
10 9 N T T	I - current flowing, amp
$10.8 N_w L I$	<u> </u>
A = V _d E	V _d - allowable voltage drop, decimal equal to 0.02 adequate
V_d E	for all conditions
	E – voltage, volt
Lamp Lumen Required	L ₁ - lamp lumen required, lumen
	L _i - light intensity, foot candle
Ι. Δ.	A_f - floor area, ft^2
$L_{l} = \frac{L_{i} A_{f}}{$	
	CU - coefficient of utilization, 0.04 to 0.72
CU SF	SF - service factor, 0.7
Maximum Lamp Spacing	M _S - maximum lamp spacing, ft
(Florescent Lamp)	C _i - lamp coefficient, 0.9 for RLM standard-dome frosted
1,	lamp and 1.0 for RLM standard silvered-bowl lamp
$M_S = C_i M_H$	M _H – Lamp height, ft
Wis Ci Win	Tith Damp hoisht, it
Maximum Lamp Spacing	M _S - maximum lamp spacing, ft
(Incandescent Lamp)	C_f - lamp coefficient, 0.9 for Direct RLM with louvers, 1.0
	for direct RLM 2-40 watts, and 1.2 for indirect-glass,
$M_S = C_f M_H$	plastic, metal
	M _H - lamp height, ft

Indicated Horsepower	IHP – indicated horsepower, hp
1	P – mean effective pressure, psi
P L A N n	L – length of stroke, ft
IHP = ——	A – area of bore, in ²
33000 c	N – crankshaft speed, rpm
	n – number of cylinder
	c - 2 for four stroke engine and 1 for two stroke engine
Piston Displacement	PD – piston displacement, cm ³
	Dp – piston diameter, cm
πD^2	L – length of stroke, cm
PD = -L n	n – number of cylinders
PD = - L n	
Piston Displacement Rate	PDR – piston displacement rate, cm ³ /min
1	PD – piston displacement, cm ³
$PDR = 2 \pi PD N$	N – crankshaft speed, rpm
	1 / 1
Compression Ratio	CR – compression ratio
-	PD – piston displacement, cm ³
PD + CV	CV – clearance volume, cm ³
CR =	,
CV	
Brake Horsepower	BHP – brake horsepower, hp
-	IHP – indicated horsepower, hp
BHP = IHP $\xi_{\rm m}$ or	$\xi_{\rm m}$ – engine mechanical efficiency, decimal
J	FHP – friction horsepower, hp
= IHP - FHP	• • •

$\label{eq:kappa} \begin{split} \text{Mechanical Efficiency} \\ \xi_m = & \frac{BHP}{$	$BHP-brake\ horsepower,\ hp$ $IHP-indicated\ horsepower,\ hp$ $\xi_m-engine\ mechanical\ efficiency,\ decimal$
Rate of Explosion $ER = \frac{N}{c}$	ER – explosion rate, explosion per minute N – crankshaft speed, rpm C – 2 for four stroke engine
Thermal Efficiency, Theoritical $\xi_{theo} = \frac{C \ W_t}{Q_t} \ x \ 100$	$\xi_{\text{theo}} \text{theoretical thermal efficiency, \%} \\ W_t - \text{theoretical work, kg-m} \\ Q_t - \text{supplied heat quantity, Kcal/hr} \\ C - \text{conversion constant}$
Thermal Efficiency, Effective $\xi_{eff} \ = \frac{C \ N_e}{H_u B} \ x \ 100$	$\xi_{eff} - \text{ effective thermal efficiency, } \% \\ N_e - \text{ Effective output, watt} \\ H_u - \text{ calorific value of fuel, kCal/kg} \\ B - \text{ indicated work, kg/hr} \\ C - \text{ conversion constant} $

Specific Fuel Consumption	SFC – specific fuel consumption, kg/W-sec
	V – fuel consumption, m ³
$SFC = \frac{V}{N_e t} S$	N _e – Brake output
SFC = S	T – time, sec
N _e t	S – specific gravity of fuel, kg/m ³
Break Mean Effective Pressure	BMEP – brake mean effective pressure, kg/cm ²
210011 1/10011 2110011/0 1 100011/0	BHP – brake horsepower, hp
(75) 50 BHP	L – piston stroke, m
$BMEP = \frac{(75) 50 BHP}{}$	A - piston area, cm2
LANn	N – number of power stroke per minute
	N – number of cylinders
Number of Times Intake Valve	TO – number of time intake valve open
Open	N – crankshaft speed, rpm
	C-2 for four stroke engine - 0 for two stroke engine
N	
TO =	
c	
	2
Piston Area	A _p - piston area, cm ²
_ 2	D – piston diameter, cm
$A_{p} = \frac{\pi D^{2}}{}$	
$A_{p} = \frac{}{4}$	

Stroke to Bore Ratio $R = \frac{S}{}$	R – stroke to bore ratio S – piston stroke, cm B – piston diameter, cm
В	
BHP Correction Factor (Gasoline Engine- Carburator or Injection)	K _g – BHP correction factor. Dmls T – ambient air temperature, C P _b – total atmospheric pressure, mb
$K_{g} = \begin{pmatrix} 1013 \\ \\ Pb \end{pmatrix} x \begin{array}{c} T + 273 & ^{0.5} \\ \\ 293 & \end{array}$	
BHP Correction Factor (Diesel Engine-4 Stroke Naturally Aspirated)	K _d – BHP correction factor. Dmls T – ambient air temperature, C P _b – total atmospheric pressure, mb
$K_d = \begin{array}{cccc} 1013 & ^{0.65} & T + 273 & ^{0.5} \\ & & & \\ P_b & & & 293 \end{array}$	
Output Power $P_o = \frac{T N}{974}$	P _o – power output, KW T – shaft torque, kg-m N – shaft speed, rpm

Fuel Consumption	F _c – fuel consumption, lph
-	F _u – fuel used, liters
$F_c = F_u / T_o$	T _o – total operating time, hrs
Specific Fuel Consumption	SFC – specific fuel consumption, g/KW-hr
•	F _c – fuel consumption, lph
$SFC = F_c \rho_f / P_s$	$\rho_{\rm f}$ - fuel density, kg/liter
,,,,	P _s – shaft power, KW
	, , , , , , , , , , , , , , , , , , ,
Fuel Equivalent Power	P _{fe} - fuel equivalent power, kW
-	H _f - heating value of fuel, kJ/kg
$P_{fe} = [H_f \ m_f] / 3600$	m _f - rate of fuel consumption, kg/hr
	1 / 5
Air Fuel Ratio	A/F - mass of air required per unit mass of fuel
	x, y, z – number of carbon, hydrogen, and oxygen atoms
137.3 [x + y/4 - z/2]	in the fuel molecule
$A/F = \frac{1}{\phi [12 x + y + 16 z]}$	φ - equivalence ratio
$\phi [12 x + y + 16 z]$	' ·
, , ,	
Air Handling Capacity	m _a – air handling capacity, kg/hr
	V _e – engine displacement, liters
$m_a = 0.03 V_e N_e \rho_a \eta_v$	N _e – engine speed, rpm
	ρ_a - density of air, 1.19 kg/m ³
	η_{v} - air delviery ratio 0.85 for CI, 2.0 turbocharge engine
Engine Air Density	ρ_a - density of inlet air, kg/m ³
	$\rho_{\rm ex}$ - density of engine exhaust, kg/m ³
$\rho_a = p / 0.287 \Theta$: inlet	p – gas pressure, kPa
,	Θ - gas temperature, K
$\rho_{\rm ex} = p / 0.277 \Theta$: exhaust	Sub temperature, 12
Fox Proserve Community	

ENGINE FOUNDATION

Weight of Foundation	W _f - weight of foundation, kg
	ε - empirical coefficient, 0.11
$W_f = \varepsilon W_e [N]^{0.5}$	W _e - weight of engine and base frame, kg
	N - maximum engine speed, rpm
Volume of Foundation	V _f - volume of foundation, m ³
	W _f - weight of foundation, kg
$V_f = W_f / \rho_c$	ρ _c density of concrete, 2,4006 kg/m ³
Depth of Foundation	D _f - depth of foundation, m
D W/F + I 1	V _f - volume of foundation, m ³
$D_{f} = V_{f} / [w_{e} + L_{e}]$	w _e - width of engine plus allowance, m L _e - length of engine
	plus allowance, m
Exerted Soil Pressure at the	P _s - soil pressure exerted at the based of foundation, kg/m ²
Foundation	W _e - weight of engine, kg
	W _f - weight of foundation, kg
$P_{s} = [W_{e} + W_{f}] / A_{f}$	A _f - area of foundation, kg
	-
E 4 60 64	FC
Factor of Safety	FS - factor of safety, dmls
	BC _s - safe soil bearing capacity, 12,225 kg/m ² P _s - soil pressure exerted at the based of foundation, kg/m ²
$FS = BC_s / P_s$	rs - son pressure exerted at the based of foundation, kg/m
$\Gamma S = DC_S / \Gamma_S$	

Width of Flat belt $W = \frac{R M}{K P}$	W – width of flat belt, in. R – nameplate horsepower rating of motor, hp K – theoretical belt capacity factor, 1.1 to 19.3 P – pulley correction factor, 0.5 to 0.1
Width of Belt $W = \frac{H S}{K C}$	W - width of belt, mm H - power transmitted, Watts S - service factor, 1.0 to 2.0 K - power rating of belt, watts/mm C - arc correction factor, 0.69 at 90 deg and 1.00 at 180 deg
Horespower Rating of Belt $H = \frac{W K P}{M}$	H – horsepower rating of belt, hp W – width of belt, in M – motor correction factor, 1.5 to 2.5 P – pulley correction factor, 0.5 to 1.0 K – theoretical belt capacity factor, 1.1 to 19.3

Speed and Diameter $N_r D_r = N_n D_n$	N_r – speed of driver pulley, rpm N_n – speed of driven pulley, rpm D_r – diameter of driver pulley, inches D_n – diameter of driven pulley, inches
Length of Belt (Open drive) $L = 2 C + 1.57 (D_r + D_n) + \frac{(D_r - D_n)^2}{4 C}$	$L-length \ of \ belt, inches$ $C-center \ distance \ between \ pulleys, inches$ $D_r-diameter \ of \ driver \ pulley, inches$ $D_n-diameter \ of \ driven \ pulley, inches$
Length of Belt (Cross drive) $L = 2 C + 1.57 (D_r + D_n) + \frac{(D_r + D_n)^2}{4 C}$	$\begin{array}{c} L-\text{length of belt, inches} \\ C-\text{center distance between pulleys, inches} \\ D_r-\text{diameter of driver pulley, inches} \\ D_n-\text{diameter of driven pulley, inches} \end{array}$

Length of Belt (Quarter-Turn drive)	L – length of belt, inches
zongen er zere (Quarter 1 m.n. m.1/e)	C – center distance between pulleys, inches
	D _r – diameter of driver pulley, inches
$L = 1.57(D_r + D_n) + \sqrt{C^2 + D_r^2} + \sqrt{C^2 + D_n^2}$	D_n – diameter of driver pulley, inches
$L = 1.37(D_r + D_n) + \sqrt{C + D_r} + \sqrt{C + D_n}$	D _n diameter of driven puncy, menes
Dolf Chood	V halt and fam
Belt Speed	V – belt speed, fpm
	N _p – pulley speed, rpm
$V = 0.262 N_p D_p$	D _p – pulley diameter, inches
Speed Ratio	R _s – speed ratio
	N_n – driven pulley, inches
$R_s = N_n / N_r$	N _d – driver pulley, inches
	Tig arriver panely, menes
Arc of Contact	Arc – arc of contact, degrees
1210 01 0010000	D ₁ – diameter of larger pulley, inches
(D. D.)	D _s – diameter of smaller pulley, inches
$Arc = 180^{\circ} - 57.3 \frac{(D_1 - D_s)}{}$	1 3,
$Arc = 180^{\circ} - 57.3$	C – center distance between pulleys, inches
C	

Effective Pull	(T ₁ -T ₂) - effective pull, N P – power, KW
$(T_1 - T_2) = \frac{1000 \text{ P}}{V}$	V – belt speed, m/s
Center Distance $C = \frac{b^{-} + \sqrt{b^2 - 32 (D_1 - D_s)^2}}{16}$ $b = 4L_s - 6.28 (D_1 + D_s)$	$\begin{array}{c} C-\text{distance between centers of pulley, mm} \\ L_s-\text{available belts standard length, mm} \\ D_l-\text{diameter of larger pulley, mm} \\ D_s-\text{diameter of small pulley, mm} \end{array}$
Length of Arc $L_a = \frac{D A}{115}$	L _a – length of arc, mm D – diameter of pulley, mm A – angle in degrees subtended by the arc of belt contact on pulley, deg

Density, ρ	m – mass, kg, slug
$\rho = m/v$	$v - volume, m^3, ft^3$
Specific volume, v	$v - volume, m^3, ft^3$
v = v/m	m – mss, kg, slug
Specific weight, γ, ω	ρ – density, kg/m ³ , slug/ft ³
$\gamma = \omega = \rho g$	g – gravitational acceleration,
1 ~ P5	ft/sec ² , m/sec ²
Specific gravity, s	subs – substance
$S_{\text{subs}} = \rho_{\text{subs}}$	std subs – standard substance
-subs <u>F subs</u>	
ρ _{std subs}	
$= \frac{\gamma_{\text{subs}}}{\gamma_{\text{subs}}}$	
γstd subs	
Vapor Pressure, Pv	Pv – vapor pressure
Pv α Ts	Ts – saturation or boiling
	Temperature
Viscosity	v – kinematic viscosity, m ² /sec
$v = \mu/\rho$	μ – absolute viscosity, Pasec
	ρ – density, kg/m ³
Ideal Gas	P – absolute pressure, kPaa
Equation of State:	v – total or absolute volume, m ³
Pv = mRT	R – gas constant, 8.3143 kJ/M
	kg K, 1545.32 ft lb/M lb °R
	M – molecular weight of gas
	T – absolute temperature, K
Gas constant and specific heat	Cp – specific heat at constant
	pressure
R = Cp - Cv	Cv – specific heat at constant
k = Cp/Cv > 1.0	volume
	R – gas constant
	k – specific heat ratio
Gay – Lussac's Law	P ₁ – initial absolute pressure, kPaa,psia
	P ₂ – final absolute pressure, kPaa, psia
	T ₁ - initial absolute temperature, K, °R
$\begin{bmatrix} mT \end{bmatrix} \begin{bmatrix} mT \end{bmatrix}$	T_2 – final absolute temperature, K, ${}^{\circ}R$
$\frac{1}{1}$	v_1 – absolute initial volume, m^3 , m^3
$m_1 \neq m_2$	v ₂ - absolute final volume, m ³ , ft ³
$\underline{P_1V_1} = \underline{P_2V_2}$	m ₁ – initial mass, kg, lb
$m_1T_1 \qquad m_2T_2$	m ₂ – final mass, kg, lb
$m_1 = m_2$	
$\underline{P_1V_1} = \underline{P_2V_2}$	
T_1 T_2	

Boyle's Law $T_1 = T_2$	v_1 – initial specific volume, m^3/kg v_2 – final specific volume,
	m ³ /kg
$P_1v_1 = P_2v_2$	
Charles Law	
Case I: @ $v_1 = v_2$, $m_1 \neq m_2$	
$\frac{P_1}{m_1 T_1} = \frac{P_2}{m_2 T_2}$	
(a) $m_1 = m_2$	
$ \underline{P_1} = \underline{P_2} $ $ T_1 = T_2 $ Case II: @ $P_1 = P_2$	
$\frac{\mathbf{v}_1}{\mathbf{m}_1 \mathbf{T}_1} = \frac{\mathbf{v}_2}{\mathbf{m}_2 \mathbf{T}_2}$	

$$\frac{v_1}{T_1} = \frac{v_2}{T_2}$$

Bulk Modulus of Elasticity	E _v – bulk modulus of elasticity or volume
- υ ₁ dP	modulus of elasticity
$E_{v} = \frac{-\frac{1}{2} - \frac{1}{2} - \frac{1}{2}}{1 - \frac{1}{2} - \frac{1}{2}}$	v_1 – initial specific volume
dυ	v_2 – final specific volume
d0	dP – change in pressure
D.,	dv – change in volume
Pressure Measurements	P _{abs} – absolute pressure
	P _g – vacuum pressure gage or tensile pressure
$P_{abs} = P_g + P_b$	P _b – pressure of atmospheric air measured by
	the use of barometer
sForces on Plane Areas	F – volume of pressure diagram
	h _c – vertical height from fluid surface to neutral
$F = \gamma h_c A$	axis, m
	A – plane area, m^2
$h_p = h_c + e$	
	h _p – vertical height from vertical point of
I_{NA}	application of F to fluid surface, m
e =	e – eccentricity, m
$e = \frac{I_{NA}}{h_c A}$	I _{NA} – centroidal moment of inertia
,	1
Common I _{NA}	
-NA	
Rectangle	
BH ³	B – base of the rectangle
$I_{NA} = \frac{BH^3}{}$	H – height of the rectangle
1 _{NA}	The height of the rectangle
12	
Triangle	
BH ³	D has afthe triangle
	B – base of the triangle
$I_{NA} = \phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$	H – height of the triangle
30	
Ci1-	
Circle P4	D I'
$\pi D^4 \qquad \pi R^4$	D – diameter
I _{NA} = =	R – radius
64 4	

Semi-circle

$$I_{NA} = 0.1098 R^4$$

R – radius

Ellipse

 $I_{NA} = \frac{\pi}{ab^3}$

a – vertical distance from the neutral axis to the end of ellipse

b – horizontal distance from the neutral axis to the end of ellipse

a – horizontal distance from neutral axis to end of ellipse

b – vertical distance from neutral axis to the end of ellipse

BF – buoyant force

V – volume displaced

 γ γ – specific weight

Vertical Motions of Liquids	a – vertical acceleration g – 9.81 m/s ²
For upward motion:	- 32.2 ft/s ² h – height of fluid
$P_{\rm B} = \gamma h \left(1 + a/g \right)$	γ – specific weight of fluid
For downward motion:	P _B – pressure exerted by fluid at tank's bottom
$P_{\rm B} = \gamma h (a - a/g)$	
For horizontal motion of liquids	θ – angle of inclination of fluids surface where subjected to horizontal motion
or inquitus	a – acceleration
$\tan \theta = a/g$	$g - 9.81 \text{ m/s}^2$, 32.2 m/s ²
Inclined plane motion	ax - a cos β
Upward motion:	$ay - a \sin \beta$
ax	
$\tan \theta = \frac{1}{1 + 2\lambda}$	
g + ay	
Downward motion:	
$\tan \theta = \frac{ax}{}$	
g - ay	

FURROW IRRIGATION

Size of Stream	Q_s - maximum non-erosive furrow stream, gpm S - slope of land, $\%$
$Q_s = 10 / S$	
Safe Length of Furrow	L _s - safe length of furrow, ft
	I - rainfall intensity, iph
$L_s = 1000 / [(I - F) W S]$	F - infiltration rate of soil, iph
	W - furrow spacing, ft
	S - slope of furrow, %

GAS CLEANING

Minimum Particle Size Diameter for Horizontal Settling Chamber (Particles smaller than 200 micron)

$$d_{min} = \sqrt{ \begin{array}{c} 18 \text{ H V } \mu \\ \\ \rho_{p} \text{ g L} \end{array} }$$

d_{min} particle size that can be retained, m

H - height of chamber, m

V - gas velocity, m/s

 μ - viscosity, 220x10-7 kg/m-s for producer gas

 ρ_p - particle density, 1000-1500 kg/m^3

g - gravitational acceleration, 9.81 m/sec²

L - length of chamber, m

Diameter of Particles too be Collected from Cyclone Separator at 50% Collection Efficiency

$$d_{50} = 58.4 [0.2 D/V]$$

 D_{50} - diameters of particles collected with 50% efficiency, micron

D - cyclone separator diameter, m

V - inlet gas velocity, m/s

GASIFIER

Heat Energy Demand to Replace Fuel For Diesel	Qd = heat energy demand, kcal/hr Vfr - mass flow rate, liters/hr Mfr - mass flow rate, kg/hr HVF - heating value of fuel
$Qd = Vfr \times 0.845 \times 10917$	11 v1 heating value of fact
For kerosene Qd = Vfr x 0.7923 x 11,000	
For LPG Qd = Mfr x 11767	
Weight of Fuel	FCR - weight of fuel, kg/hr Q _a - actual heat required, kCal/hr
$FCR = Q_a / [\xi_g HVf]$	ξ _g - efficiency of gasifier, decimal HVf - heating value of fuel, kCal/kg
Air Required for Gasification	AFR – air flow rate, kg/hr FCR – fuel consumption rate, kg/hr
AFR = FCR SA e	SA – stoichiometric air, kg air/kg fuel e - equivalence ratio, 0.3 to 0.4
Inner Reactor Diameter	D _i - reactor diameter , m FCR - fuel consumption rate, kg/hr
(Double Core Down Draft- Type)	SGR - specific gasification rate, kg fuel/m ² -hr
D _i = [1.27 FCR / SGR] ^{0.5} Outer Reactor Diameter	D _o - outer core diameter of reactor, m
(Double Core Down Draft Type)	D_i - inner core diameter of reactor, m
$D_0 = 1.414 D_i$	

GASIFIER

Height of Reactor for Batch	H _r - reactor height, m
Type Gasifier	FZR - fire zone rate, m/hr
	T_o – operating time
$H_r = FZR T_o$	
Static Pressure Requirement	P _s - static pressure requirement in fuel bed, cm H ₂ O
	H _r - reactor height, m
$P_s = H_r \delta_s$	$\delta_{\rm s}$ - specific draft, cm H ₂ O/m depth of fuel
Char Discharge Rate	Q _c – char discharge rate, kg/hr
	FCR – fuel consumption rate, kg/hr
$Q_c = FCR \zeta_c$	$\zeta_{\rm c}$ – percentage char produced, decimal
Power Output	Po – power output, kw
	FCR – fuel consumption rate, kg/hr
$Po = 0.0012 \text{ x FCR x } \xi \text{g /HVF}$	ξg – gasifier efficiency, %
	HVF – heating value of fuel, kcal/kg
Power Output Rice Husk	Po – power output, kcal/hr
Gasifier based on Gas Produced	Vfr – volumetric flow rate of gas produced, m3/hr
$Po = V fr \times 1400$	
Efficiency of Rice Husk Gasifier	ξg – gasifier efficiency, %
	Vfr – volumetric flow rate of gas, m3/hr
$\xi g = Po \ 100 / (Mfrx 3000)$	Mfr – mass flow rate of fuel, kg/hr

GEARS

Gear Ratio	GR - gear ratio
	T _n - number of teeth of driven gear
$GR = T_n / T_r$	T _r - number of teeth of driver gear
Design Power (Helical and Spur	Pd - design power, kW
Gears)	Pt - power to be transmitted, kw
	SF_{lo} - service factor for the type of load, 1.0 -1.8
$P_{d} = P_{t} (SF_{lo} + SF_{lu})$	SF_{lu} - service factor for type of lubrication, 0.1-0.7
Center Distance	CD - center distance
	M - module
$M(t_1 + t_2)$	t ₁ - number of teeth of the driven gear
$CD = \frac{M (t_1 + t_2)}{2}$	t ₂ - number of teeth of the driver gear
2	
Design Power (Straight Bevel	P _d - design power, KW
Gear)	P _t - power to be transmitted, KW
	SF – service factor, 1 to 2.5
$P_d = P_t SF / LDF$	LDF – load distribution factor, 1.0 to 1.4
Driver Gear Pitch Angle (Straight	γ - pitch angle for the driver gear, deg
Bevel Gear)	t_1 – number of teeth of the driver gear
-1 , , ,	t_2 – number of teeth of the driven gear
$\gamma = \tan^{-1} t_1 / t_2$	
Driven Gear Pitch Angle (Straight	Γ - pitch angle for the driven gear, deg
Bevel)	γ - pitch angle for the driver gear, deg
20.01)	7 - piten angle for the driver gear, deg
Γ = 90° - γ	

Drying Capacity	C _d – drying capacity, kg/hr
·	W _i – initial weight of material, kg
$C_{d} = (W_{i} / T_{d})$	T _d – drying time, hr
Final Weight of Dried Material	W _f – final weight of dried material, kg
That Weight of Direct Material	W _i – initial weight of material, kg
$W_{i} (100 - M_{ci})$	M _{ci} – initial moisture content, %
$W_f = \frac{1}{2}$	MC _f – final moisture content, %
$W_{\rm f} = \frac{100 - MC_{\rm f}}{100 - MC_{\rm f}}$	ŕ
Moisture Reduction per Hour	MRR – moisture reduction rate, kg/hr
W. W.	W _i – initial weight, kg
$W_i - W_f$	W _f – final weight, kg
$MRR = {T_d}$	T _d – drying time, hr
I d	
Heat Supplied to the Dryer	Q _{sd} – heat supplied to the dryer, KJ/hr
	H ₂ – enthalpy of drying air, KJ/kg da
60 (h ₂ -h ₁) AR	H ₁ – enthalpy of ambient air, KJ/kg da
$Q_{sd} = $	AR – airflow rate, m ³ /min
γ	γ - specific volume, m ³ /kg da
Heat Available in the Fuel	Q _{af} – heat available in the fuel, KJ/hr
O FOR III	FCR – fuel consumption rate, kg/hr
$Q_{af} = FCR HV_f$	HV _f – heating value of fuel, KJ/hr

Heat System Efficiency $\xi_{hs} = (Q_{sd} / Q_{af}) \ 100$	ξ_{hs} – heating system efficiency, % Q_{sd} – heat supplied to the dryer, KJ/hr Q_{af} – heat available in the fuel, KJ/hr
Heat Utilization	HU – heat utilization, KJ/kg
$HU = (Q_{sd} \times T_d / MR) 100$	Q _{sd} – heat supplied to the dryer, KJ/hr T _d – drying time, hr MR – amount of moisture removed, kg
Heat Utilization Efficiency	ξ _{hu} – heat utilization efficiency, % THU – total heat utilized, KJ/hr
THU	Q_{sd} – heat supplied to the dryer, KJ/hr
$\xi_{hu} = {Q_{sd}} \times 100$	(34)
Volume of Grain to be Dried	V _g – volume of grain to be dried, m ³
$V_g = 1000 W_i / D_g$	W_i – initial weight of grain, tons D_g – grain density, kg/m^3
Drying Floor Area	A _f – floor area of bin, m ²
$A_f = V_g / D_g$	V_g – volume of grain in bin, m^3 D_g – depth of grain in bin, m

Airflow Requirement	A _f – air flow rate, m ³ /min
	C – dryer capacity, tons
$A_f = C SAF$	SAF – specific air flow rate, m ³ /min-ton
Apparent Air Velocity in Grain Bed	V _{app} – apparent air velocity, m/min
	AF – total airflow, m ³ /min
$V_{app} = AF / A_f$	A_f – dryer floor area, m^2
Blower Pressure Draft Requirement	P _d – blower pressure draft, cm of water
	P _s – specific pressure draft, cm water per meter
$P_d = P_s D_g$	depth of grain
	D _g – depth of grain in bed, m
Theoretical Heat Required	Q _r – theoretical heat required, KJ/min
	H_n – net enthalpy, KJ/kg
H_n AF	V _s – specific volume of air, m ³ /kg
$Q_r = {}$	
V_{s}	
	WE I I I I CO I I / I
Theoretical Weight of Fuel	WF – theoretical weight of fuel, kg/min
WE O LINE	Q _r – total heat required, KJ/min
$WF = Q_r / HVF$	HVF – heating value of fuel, KJ/kg

Theoretical Volume of Fuel	W _f – theoretical volume of fuel, lpm WF – total weight of fuel, kg/min
$V_f = WF / D_f$	D _f – density of fuel, kg/liter
Actual Volume of Fuel	FV _a – actual volume of fuel, lph
	V _f – theoretical volume of fuel, lph
$FV_a = V_f / \xi_t$	ξ_t –thermal efficiency, decimal
Weight of Moisture Removed	WMR – weight of moisture removed, kg
	W _i – initial weight of grain to be dried, kg
1 - Mc _i	MC _i – initial moisture content, decimal
$WMR = W_i (1 - \underline{\hspace{1cm}})$	MC _f – final moisture content, decimal
$1-MC_{\mathrm{f}}$	
Drying Time	DT – drying time, min
	WMR – weight of moisture to be removed, kg
WMR	AF – airflow rate mg/min
DT =	V_s – air density, kg/m ³
AF V _s HR	HR – humidity ratio, kg moisture/kg da

GRAIN ENGINEERING PROPERTIES

Paddy Porosity	P _m – porosity for medium paddy, %
	P ₁ – porosity for long paddy, %t
$P_{\rm m} = 69.05 - 0.885 \mathrm{M}$	M – moisture content wet basis, %
$P_1 = 65.55 - 0.475 M$	
Thermal Conductivity of Paddy Grains	K – thermal conductivity, BTU/hr-ft-°F
, ,	M – moisture content, % wet basis
K = 0.0500135 + 0.000767 M	,
Specific Heat of Paddy	C – specific heat, BTU/lb-°F
	M – moisture content, % wet basis
C = 0.22008 + 0.01301 M	,
Length of Paddy (Short Grain)	L - length of paddy, cm
11.21% <m<21.89%< th=""><th>M – moisutre content of paddy, %</th></m<21.89%<>	M – moisutre content of paddy, %
	1 37
L = 0.7318 + 0.00122 M	
Width of Paddy (Short Grain)	W - width of paddy, cm
11.21% <m<21.89%< th=""><th>M – moisutre content of paddy, %</th></m<21.89%<>	M – moisutre content of paddy, %
	1 0,
W = 0.3358 + 0.00089 M	
Thickness of Paddy (Short Grain)	T - thickness of paddy, cm
10.40% <m<22.59%< th=""><th>M – moisutre content of paddy, %</th></m<22.59%<>	M – moisutre content of paddy, %
	1 37
T = 0.2187 + 0.000089 M	
0.2107 * 0.000007 111	

GRAIN ENGINEERING PROPERTIES

Coefficient of Thermal Expansion of	C _k – coefficient of thermal expansion at storage
Milled Rice (For Temp Below 53 °C)	moisture over a temperature of 30-70 °C
$C_k = 0.0002403 \text{ per C}$	
Coefficient of Thermal Expansion of	C _k – coefficient of thermal expansion at storage
Milled Rice (For Temp Equal and	moisture over a temperature of 30-70 °C
Above 53 °C)	
$C_k = 0.0003364 \text{ per C}$	
Latent Heat of Vaporization of Paddy	HV – latent heat of vaporization, KJ/kg
	T – air temperature, °C
HV = 2.32 [1094-1.026 x]	M – moisture content, decimal dry basis
(T+17.78)] x	
[1 + 24962 Exp (-21.73M)]	
Equilibrium Moisture Content	Md – moisture content, decimal dry basis
	E – constant, 0.0183212 to 0.480920
$M_d = E - F \ln [-R (T + C) \ln RH]$	F – constant, 0.026383 to 0.066826
	R – universal gas constant, 1.987
	T – temperature, °C
	C – constant, 12.354 to 120.098
	RH – relative humidity, decimal

GRAIN ENGINEERING PROPERTIES

Mass Transfer Coefficient of Paddy	K_g – mass transfer coefficient, moisture
·	decimal drybasi-cm ² /h-m ² -kg
$K_g = 0.008489 - 0.000225T$	T – temperature of drying air, °C
+0.000236 RH – 0.00042 Q	RH – relative humidity, %
	Q – airflow rate of drying air, m ³ /min
Equilibrium Moisture Content	Md – moisture content, decimal dry basis
	E – constant, 0.0183212 to 0.480920
$M_d = E - F \ln [-R (T + C) \ln RH]$	F – constant, 0.026383 to 0.066826
	R – universal gas constant, 1.987
	T – temperature, °C
	C – constant, 12.354 to 120.098
	RH – relative humidity, decimal
Mass Transfer Coefficient of Paddy	K _g – mass transfer coefficient, moisture
	decimal drybasi-cm ² /h-m ² -kg
$K_g = 0.008489 - 0.000225T$	T – temperature of drying air, °C
+0.000236 RH – 0.00042 Q	RH – relative humidity, %
	Q – airflow rate of drying air, m ³ /min

GRAIN SEEDER

Nominal Working Width	W - working width, m
8	n - number of rows
W = n d	d - row spacing, m
Effective Diameter of Ground	D _e - effective diameter of ground wheel under load, m
Wheel	d - distance for a given N, m
	N - number of revolution, rpm
d	
$D_e = \frac{d}{}$	
π Ν	
Delivery Rate	Q - delivery rate, kg/ha
	L - delivery for a given N, kg
L 10,000	D _e - effective diameter of ground wheel under load, m
$Q = \frac{L 10,000}{}$	N – number of revolution, rpm
π D _e N W	W - working with, m
·	
Delivery Rate (PTO-Driven	Q - delivery rate, kg/ha
Machine)	L - delivery for a given N, kg
·	v - tractor speed, m/s
L 10,000	t – time for measuring delivery, s
$Q = \frac{L 10,000}{v t W}$	W - working with, m
v t W	
Effective Field Capacity	e _{fc} - effective field capacity, m ² /h
	A - area covered, m ²
$e_{fc} = A / t$	t – time used during operation, hr

GRAIN SEEDER

Theoretical Field Capacity	t _{fc} - theoretical field capacity, m ² /hr
Theoretical Field Capacity	w - working width, m
$t_{fc} = 0.36 \text{ w v}$	v - speed of operation, m/s
$t_{fc} - 0.30 \text{ W V}$	v - speed of operation, m/s
Field Efficiency	E field officiency 0/
Field Efficiency	F _e - field efficiency, %
$\Gamma = (-1.1) 100$	e _{fc} - effective field capacity, m ² /hr
$F_e = (e_{fc} / t_{fc}) 100$	t _{fe} – theoretical field capacity, m ² /hr
Fuel Consumption Rate	EC fuel consumption Inh
ruei Consumption Rate	FC - fuel consumption, lph
	V - volume of fuel consumed, 1
EC - V /4	t - total operating time, hr
FC = V/t	1 01:11
No. of Hills Planted	H _n - number of hills
4.40.000	A - area planted, hectares
A 10,000	S _r - row spacing, m
$H_n = \frac{1}{2}$	S _h - hill spacing, m
S_r S_h	
Wheel Slip	W _s - wheel slip, %
	N_o - sum of the revolutions of the driving wheel
$W_s = \frac{N_o - N_l}{} \times 100$	without load, rev
	N_1 - sum of the revolutions of all driving wheel with
N_{o}	load, rev
Distance per Hill	D _{ph} - distance per hill, mm
	S _r - speed ratio of ground wheel and seed plate
	D_{g} - diameter of the ground wheel, mm
$D_{ph} = S_r \pi D_g / Nc$	N _c - number of cells in the seed plate

GRAIN SEEDER

Speed Ratio of Ground Wheel and	R - speed ratio
Metering Device	N _c - number of cells
	H _s - hill spacing, m
N_c H_s	C _{gw} - circumference of ground wheel, m
R =	
C_{gw}	
Total Weight of Seeds	TW _s - total weight of seeds needed, kg
	N _h - number of hills
N_h N_{sh} S_w	N _{sh} – number of seeds per hill
$TW_s = $	S _w - specific weight of seeds, g/seeds
1000 E	E - emergence, decimal

GRAIN STORAGE LOSS

Loss Due to Respiration (Medium	L _{res} – weight loss due to respiration, kg
Grain)	W _g – weight of grain stored, kg
	DML – dry mater loss, decimal
$L_{res} = W_p x DML$	t – storage time, hr/1000
	T – temperature, °F
$DML = 1-exp[[-At^{C} exp[D(T-60)]$	W – moisture content, decimal wb
	A – constant, 0.000914
Exp [E (W-0.14)]]	C – constant, 0.6540
	D – constant, 0.03756
	E – constant, 33.61
Loss Due to Microorganism	L _m - weight loss due to microorganism, kg
	W _i - weight of incoming stock, tons
$\left(W_{i}(100-M_{i})\right)$	M _i - moisture content of incoming stock, %
$Lm = \frac{W_{i}(100-M_{i})}{100} + 0.68x10^{-0.44Mi-11.08} D$	w.b.
100	D - storage period, days
Loss Due to Insect	L _i - weight loss due to insects, kg
	I _d - percent insect damaged kernels at the end of
$L_{i} = 0.003 I_{d}$	the storage period, %

GRAIN STORAGE LOSS

Loss Due to Rodents $L_r = C \ D$	L _r - weight loss due to rodents, kg C - coefficient, 0.0036, 0.020, 0.035 kg/day for mice, small rats, and big rats respectively D - storage period, days
Loss Due to Birds	L _b - weight loss due to birds, kg
$L_b = 0.005 D P$	D - storage period, days P - bird population
Loss Due to Spillage	L _s - weight loss due to spillage, kg W _g - weight of grain handled, kg
$L_s = 0.005 W_g H_f$	H_f – number of times of handling
Total Weight Loss	L _t - total weight loss, kg
$L_t = L_r + L_m + L_i + L_r + L_b + L_s$	L_r - weight loss due to respiration, kg L_m - weight loss due to microorganism, kg L_i - weight loss due to insect, kg L_r - weight loss due to rodents, kg L_b - weight loss due to birds, kg
	$L_{\rm s}$ - weight loss due to spillage, kg

GRAIN STORAGE STRUCTURE

	3
Volumetric Capacity of Cylindrical Grain	V - bin capacity, m ³
Bins (Level Full Volume)	D - bind diameter, m
	EH - eave height of bin, m
- D ²	Err cave neight or om, m
πυ	
$V = \frac{\pi D^2}{$	
4	
Volumetric Capacity of Cylindrical Grain	V - bin capacity, m ³
Bins (Peaked Storage Capacity)	D - bind diameter, m
	EH - eave height of bin, m
$\left(-D^2\right)\left(-D^2\right)\left(D/2\right)$ to D	
$\pi D = \pi D = \pi D = \pi D = \pi D$	φ - maximum angle of fill, deg
$V = \frac{\left(\pi + \frac{D^2}{4}\right) \left(EH + \frac{\pi + \frac{D^2}{4}\right) \left(\frac{D/2}{3}\right) \tan \phi}{3}$	
Volumetric Capacity of Cylindrical Grain	V - bin capacity, m ³
Bins (Hopper Bottom Bin)	D - bind diameter, m
Bins (Hopper Bottom Bin)	· ·
$\begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} & -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} & -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} & -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} & -2 \end{pmatrix} & -2 \end{pmatrix} & -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} & -2 \end{pmatrix} & -2 \end{pmatrix} & -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} & -2 \end{pmatrix} $	EH - eave height of bin, m
$ \pi D^2 = \pi D^2 (D/2) \tan \phi $	φ - maximum angle of fill, deg
V = EH +	δ - slope of the hopper measured in deg
$V = \left(\frac{\pi D^2}{4}\right) EH + \left(\frac{\pi D^2}{4}\right) \left(\frac{D/2}{3}\right) \tan \phi$	from horizontal
$+\left(\frac{\pi D^2}{4}\right)\left(\frac{D/2}{3}\tan \delta\right)$	
$\left[\begin{array}{ccc} \pi D & \left[\left(D/2\right) \tan \theta \right] \end{array}\right]$	
+ - -	
$\begin{bmatrix} 4 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$	

GRAIN STORAGE STRUCTURE

Airflow Resistance	ΔP - airflow resistance, Pa
	L - bed depth, m
a Q ²	a - constant, 2.57×10^4 for rice; 2.104 for
$\Delta P = \frac{a Q^2}{L}$	shelled corn
$\log_{e}(1+bQ)$	Q - airflow, m ³ /s-m ²
	B - constant, 13.2 for rice and 30.4 for
	shelled corn
Flow of Grain through Horizontal Orifice	Q _h - volume flow, m ³ /hr
Ü	A - area of the orifice, cm ²
$Q_h = 0.028 \text{ A D}^{-0.62} \text{ (corn } 12\text{-}15\%\text{wb)}$	D - hydraulic diameter, cm
El	O13/1
Flow of Grain through Vertical Orifice	Q _h - volume flow, m ³ /hr
0 0016 + D 079 (12.1650(1)	A - area of the orifice, cm ²
$Q_h = 0.016 \text{ A D} \frac{0.79}{0.62} \text{ (corn 13-165\%wb)}$	D - hydraulic diameter, cm
$Q_h = 0.024 \text{ A D} {}_{0.72}^{0.62} \text{ (sorghum 12-18\%wb)}$	
$Q_h = 0.018 \text{ A D}^{-0.72} \text{ (soybean 12\%wb)}$	
Moisture Content, Wet Basis	MC - moisture content, % wb
	W _i - initial weight of sample, g
$W_i - W_o$	W_0 - oven dry weight of the sample, g
$W_i - W_o$ $MC = x 100$, s
W _i	
**1	

GRAIN STORAGE STRUCTURE

Moisture Content, Dry Basis	MC - moisture content, % wb
	W _i - initial weight of sample, g
$W_i - W_o$	W _o - oven dry weight of the sample, g
MC = x 100	· · · · · · · · · · · · · · · · · · ·
W_0	
W ₀	
150 W. () D. D. (110
MC Wet to Dry Basis	MC _d - moisture content dry basis, %
	MC _w – moisture content wet basis, %
MC_{w}	
$MC_{d} = \frac{MC_{w}}{MC_{d}}$	
100 - MC _w	
100 111 0 W	
MC Dry to Wet Basis	MC _w – moisture content wet basis, %
IVIC DI y to VVCt Dasis	
N/C	MC _d - moisture content dry basis, %
$MC_{\rm w} = \frac{MC_{\rm d}}{}$	
$MC_w =$	
$100 + MC_d$	
Warehouse Capacity (Height of Sack in Pile	C _{wh} - estimated warehouse capacity, bags
= 0.225 m	L - effective length of warehouse, m
0.223 m)	W – effective width of warehouse, m
$C = 15 \text{ (I WH)} \cdot \text{p:}$	
$C_{wh} = 15 (L W H)$: Rice	H - effective height of warehouse, m
$C_{wh} = 10 (L W H) : Palay$	
$C_{wh} = 12 (L W H) : Corn$	

HEAT TRANSFER

Conduction (Homogenous Wall)	Q _k - heat transfer rate, W
	k - thermal conductivity, W / °K-m
$Q_k = k A (T_o - T_i) / x$	A - surface area, m ²
	T _o - outside wall temperature, °K
	T _i - inside wall temperature, °K
	x - wall thickness, m
Conduction (Composite Wall)	Q _k - heat transfer rate, W
	k - thermal conductivity, W / °K-m
A $(T_1 - T_4)$	A - surface area, m ²
$Q_k = {}$	T ₄ - outside wall temperature, °K
$x_{12}/k_{12} + x_{23}/k_{23} + x_{34}/k^{34}$	T ₁ - inside wall temperature, °K
	x - wall thickness, m
	1,2,3,4 - represent wall surfaces

HEAT TRANSFER

Conduction (Homogenous	Q _k - heat transfer rate, W
Cylindrical Wall)	K - thermal conductivity, W / °K-m
	A - surface area, m ²
$2 \pi k L (T_i - T_o)$	L - length of cylinder, m
Q _k =	T _o - outside wall temperature, °K
L _n ro/ri	T _i - inside wall temperature, K
	r - radius of wall, m
	o, i – outside and inside wall surfaces
Convection	Q _h - heat transfer rate, W
	h - heat transfer coefficient, W-m ² -°K
$Q_h = h A (T_o - T_i)$	A - surface area, m ²
	T _f - fluid temperature, °K
	T _s - surface temperature, °K
Radiation	QF - heat trabsfer rate, W
	ε - emmisivity
$Q_r = \varepsilon \lambda A T^4$	λ - Stefan-Boltzman constant, 5.7x104 W/m ² -°K ⁴
	A - surface area, m ²
	T - temperature of the surface of the material, °K

HUMAN AND ANIMAL POWER

Human Power	P _g – power generated, hp
	t – time, minutes
$P_g = 0.35 - 0.092 \log t$	
D 1 111 D 1 D 1 D	
Required Human Rest Period	Tr - required rest period, min/hr of work
T ₂ = 60 [1 250/D]	P - actual rate of energy consumption, watts
Tr = 60 [1-250/P]	
Animal Pull	P – pull, kg
	W – animal weight, kg
	L_1 - horizontal distance between front foot and
	center of gravity of the animal, m
	μ - coefficient of friction between hoof and
$W L_1 \mu$	ground surface
P =	L – horizontal distance between front and rear
$(L+h_2\mu)\cos\alpha + L_2\mu\sin\alpha$	feet, m
	L ₂ - horizontal distance of the neck load point from
	the front foot, m
	h ₂ - height of neck load point from the ground,
	m
	α - angle of line of pull from horizontal, deg
Draft Force of Ox	F - averge draft force, N
	E - energy available for work, MJ
F = [300 E/D] - 0.6 M	D - distance travelled, km
	M - weight of ox, kg

HUMAN AND ANIMAL POWER

Drawbar Horsepower	DHP – draw bar horsepower, hp
-	F – load, kg
	V – speed of animal, m/sec
DHP = F V	·
Total Draft	D _t – total draft, kg
	NA – number of animals
	D _s – draft per animal
$D_t = NA D_s f$	F – factor, 0.63 for 6 animals and 0.95 for 2
	animals
Animal Energy Used for Work	E - extra energy used for work, kJ
	A - energy used to move 1 kg of body weight 1 m
	horizontally, J
E = A F M + B F L + W/C	F – distance travelled, km
	M - liveweight, kg
+ [9.81 H M]/D	L - load carried, kg
	B - energy used to move 1 kg of applied load 1 m
C = work done/energy used	horizontally, J
	W – work done in pulling load, kJ
D = work done in raising body	C – efficiency of doing mechanical work, decimal
wieght / energy used	H – distance move vertically upwards, km
	D - efficiency of raising body weight, decimal

HYDRAULIC OF WELL

	2
Rate of Flow (Gravity Well)	q - rate of flow, m ³ /s
	K - hydraulic conductivity, m/s
$\pi K (H^2 - h^2)$	H - height of the static water level above the bottom of the water-bearing formation, m
$q \equiv \frac{1}{1000}$	h - height of the water level at the well measured from
log _e R/r	
	the bottom of the water bearing formation, m
	R - radius of influence, m
	r - radius of well, m
Rate of Flow (Artesian Well)	q - rate of flow, m ³ /s
· ·	K - hydraulic conductivity, m/s
$2 \pi \text{ Kd (H - h)}$	d - thickness of the confined layer, m
q =	H - height of the static piezometric surface above the
log _e R/r	top of the water-bearing formation, m
1080 111	h - height of the water in the well above the top of the
	water bearing formation, m
	R - radius of influence, m
	r - radius of well, m
	1 144140 01 11011, 111

HYDRAULICS

Static Pressure	P - intensity of pressure, kg/m ²
	W - unit weight of liquid, 1000 kg/m ³
P = W H	H - depth of water, m
	2
Continuity Equation	Q - discharge, m ³ /sec
	A - cross sectional area of pipe, m ²
Q = A V	V - average velocity of water, m/s
Velocity of Flow	V - velocity of flow, m/s
	g - gravitational acceleration, m/s ²
$V = [2 g H]^{1/2}$	H - height of water, m
Friction Loss in Pipe	H _f - pressure loss in pipe, m
	f - friction factor
$H_f = [f L V^2] / [2 g D]$	L - length of pipe, m
	V - average velocity of water in pipe, m/s
	g - gravitational acceleration, 9.8 m/s ²
	D - pipe diameter, m

HYDRO POWER

Water Power	P – power output, watts
water rower	
D = 0010 V O H	K – turbine efficiency, 0.25 to 0.9
P = 9810 K Q H	Q – water flow rate, m ³ /sec
	H – head, m
Turbine Specific Speed	N _s – turbine specific speed, dmls
$N_t P_o^{0.5}$	N _t – turbine speed, rpm
$N_s =$	P _o – shaft Power, kW
H ^{1.25}	H – pressure head across turbine, m
Jet Speed	V _i – jet speed, m/s
	C_v – nozzle coefficient of velocity, 0.9-0.97
$V_i = C_v (2 g H)^{0.5}$	g – gravitational acceleration, 9 m/sec ²
	H – head, m
Bucket Speed	V _b – bucket speed, m/s
•	V _i – jet speed, m/s
$V_b = 0.46 V_i$	J J J ,
Runner Diameter	D _{run} – runner diameter, m
H ^{0.5}	H – head, m
$D_{run} = 39$	N _t – shaft speed, rpm
N_{t}	
NT I D'	D _n – nozzle diameter, m
$Q^{0.5}$	Q – water flow rate, m ³ /s
$D_n = 0.54$	H – head, m
Nozzie Diameter $Q^{0.5}$ $D_n = 0.54 H^{0.25}$ Number of Buckets	,
Number of Buckets	H _b – number of buckets
D_{run}	D _{run} – runner diameter, m
$N_b = 0.5 - + 15$	D _n – nozzle diameter, m
D_n	
Bucket Width	W _b – bucket width, m
	D _n – nozzle diameter, m
$W_b = 3 D_n$,

INFILTRATION, EVAPORATION AND TRANSPIRATION

Infiltration Through Saturated Homogenous Soil $q = K h A / L$	q - flow rate, m³/s K - hydraulic conductivity of flow, m/s h - head, m A - cross-sectional area of flow, m² L - length of flow, m
Evaporation of Water (Pans and Shallow Ponds) $E = (15 + 0.93 \text{ W}) (C_s - C_d)$	E - rate of evaporation, mm/day W - average wind velocity at 0.15 m, kph C _s - saturated vapor pressure at the temperature of the water surface, mm Hg C _d - actual vapor pressure of the air (Cs x relative humidity, mm Hg

INFILTRATION, EVAPORATION AND TRANSPIRATION

Evaporation of Water (Small Lakes and Reservoirs) $E = (11 + 0.68 \text{ W}) (C_s - C_d)$	E - rate of evaporation, mm/day W - average wind velocity at 0.15 m, kph C _s - saturated vapor pressure at the temperature of the water surface, mm Hg C _d - actual vapor pressure of the air (Cs x relative humidity, mm Hg
Evapotranspiration (Rice Crops – Wet Season) ET = 0.8 E + 0.3 : vegetative stage E T = 0.9 E + 0.2 : reproductive stage	ET - evapotranspiration rate, mm/day E - pan evaporation, mm/day
Evapotranspiration (Rice Crops – Dry Season) ET = 0.8 E + 0.5 : vegetative stage E T = 0.9 E + 0.5 : reproductive stage	ET - evapotranspiration rate, mm/day E - pan evaporation, mm/day

Indefinite Integral	∫ = integral sign
Indentitive Invegrus	x = integrand
$\int f(x)dx = F(x) + C$	C = constant integration
Properties of Indefinite Integral	u – is any function
Troportion of International States	
A. definition of integral	
$\int d\mathbf{u} = \mathbf{u} + \mathbf{C}$	
B. $\int (du + dv + dw +) = \int du + \int dv$	
+ ∫du +	
6	
C. ∫Cdu = C ∫du	C – constant factor
Fundamental Integration Formulas	
A. Power formula	
$\int u^n du = u^{n+1} + C$	
n+1	
B. Logarithm	
$\int \frac{d\mathbf{u}}{\mathbf{u}} = \ln \mathbf{u} + \mathbf{C}$	
u	
C. Exponential Function	
$\int a^{\hat{u}} du = a^{u} + C$	a – constant
ln a	u – any function
D. Trigonometric function	
$\int \cos u du = \sin u + C$	
$\int \sin u du = -\cos u + C$	
$\int \sec^2 u du = \tan u + C$	
$\int \csc^2 u du = -\cot u + C$	
$\int \sec u \tan u du = \sec u + C$	
J csc u cot u du = -csc u + C	
Integral of tan u, cot u, sec u and csc u:	
$\int \tan u du = -\ln \cos u + C$	
$\int \cot u du = \ln \sin u + C$	
$\int \sec u du = \ln (\sec + \tan u) + C$	
$\int \csc u du = \ln \left(\csc u - \cot u \right) + C$	
or	
$\int \csc u du = -\ln(\csc u + \cot u) + C$	

Trigonometric Formulas	
Type I $\int \sin^m u \cos^n u du$ $\int \sin^m u \cos^{n-1} \cos u du$ $\int \cos^n u \sin^{m-1} \sin u du$	m or n – positive odd integer if m = positive odd integer $\cos^2 u = 1-\sin^2 u$ if m = positive odd integer $\sin^2 u = 1-\cos^2 u$
Type II $\int \tan^m u du or \int \cot^m u du$ $\int \tan^{m-2} u \tan^2 u du$ $\int \cot^n u \csc^{m-2} u \csc^2 u du$	m = is positive even integer $sec^2u = 1 + tan^2u$ $csc^2u = 1 + cot^2u$

Type IV
$$\int \sin^m u \cos^n u \, du$$
if $m = n$

$$\int (\sin u \cos u)^n \, du$$

$$\int \sin^m u \, du$$

$$\int (\sin^2 u)^{m/2} \, du$$

$$m \text{ and } n = \text{positive even integer}$$

$$\sin u \cos u = \frac{1}{2} \sin 2u$$

$$\sin^2 u = \frac{1}{2} (1 - \cos 2u)$$

∫ cosⁿu du **Walli's Formula**

 $\int u \, dv = uv - \int v \, du$

Transformation Using

$$\int_0^{\pi/2} \sin^m x \cos^n x \, dx = \underbrace{[(m-1)(m-3)(m-5)..., \text{ or }_1^2][(n-1)(n-3)]}_{[(m+n)(m+n-2)(m+n-4)... \text{ or }_1]}$$

Inverse Trigonometric Functions $\int du / a^2 + u^2 = 1/a \arctan u/a + C$ $\int du / \sqrt{a^2 - u^2} = \arcsin u/a + C$ Integration by Parts

 $\cos^2 u = \frac{1}{2} (1 + \cos 2u)$

Partial Fractions

A. Linear and Distinct Factors

$$\frac{A}{ax+b}$$

B. Linear and Repeated Factors

$$\frac{A}{ax+b} + \frac{B}{(ax+b)^2} + \frac{C}{(ax+b)^3} + \dots \frac{Z}{(ax+b)^n}$$

C. Quadratic and Distinct Factor

$$\frac{A(2ax + b) + B}{ax^2 + bx + c}$$

ax + b - factor of the denomination

 $(ax + b)^n$ – factor of the denominator

$$ax^2 + bx + c - factor of$$

the denominator

- cannot be
- factored

Volume of Solids of Revolution

Volume of circular disk = $\pi r^2 t$

$$dv = \pi r^2 t$$

$$v = \pi \int r^2 t$$

If using vertical element:

$$v = \pi \int_{x_1}^{x_2} (y_h - y_l)^2 dx$$

If using horizontal element:

$$v = \pi \int_{V_1}^{V_2} (x_R - x_L)^2 dy$$

r – radius t - time

Volume Element: Circular Ring

Vol. of circular ring = $\pi r_0^2 t - \pi r_i^2 t$ $dv = \pi (r_0^2 - r_i^2)t$ $v = \pi \int (r_0^2 - r_i^2)t$

Vol. of cylindrical shell = $2\pi rht$ d v = $2\pi rht$ v = $2\pi \int rht$ r_0 – the distance from axis of revolution to other end of the area element

r_i – the distance from axis of revolution to the nearest end of area element

t - dx (if using vertical element)

t - dy (if using horizontal element)

r – distance from area element to axis of revolution

If using vertical element;

t = dx $h = y_h y_L$

If using horizontal element;

t = dy $h = x_R - x_L$

Pappu's Theorem

Volume = area $(2\pi R)$

If y-axis the axis of revolution;

Volume = $2\pi \overline{x}$ (area)

If y = b is the axis of revolution;

Volume = $2\pi (\bar{y} - b)$ (area)

If x = a is the axis of revolution;

Volume = $2\pi (a - \overline{x})$ (area)

R – distance from centroid to axis of revolution

IRRIGATION EFFICIENCY

Water Conveyance Efficiency	$\xi_{\rm c}$ - water conveyance efficiency, %
	W _d - water delivered to distribution system, m ³
$\xi_c = 100 \; W_d / \; W_i$	W _i - water introduced to the distribution system, m ³
Water Application Efficiency	ξ _a - water application efficiency, %
	W _s - water stored in the soil root zone, m ³
$\xi_a = 100 \; W_s / \; W_d$	W _d - water delivered to the area being irrigated, m ³
Water Use Efficiency	ξ _u - water use efficiency, %
	W _u - water beneficially used, m ³
$\xi_u = 100 W_u / W_d$	W _d - water delivered to the area being irrigated, m ³
Water Storage Efficiency	ξ _s - water storage efficiency, %
	W _s - water stored in the root zone during irrigation, m ³
$\xi_s = 100 \text{ W}_s / \text{ W}_n$	W_n - water needed in the root zone prior to irrigation, m^3

IRRIGATION EFFICIENCY

Water Distribution Efficiency	$\xi_{\rm d}$ - water distribution efficiency, %
	y - average numerical deviation in depth of water
$\xi_{\rm d} = 100 (1 - {\rm y/d})$	stored from the average stored during
	irrigation, mm
	d - average depth of water stored during irrigation,
	mm
Consumptive Use Efficiency	$\xi_{\rm s}$ - consumptive use efficiency, %
	W _{cu} - normal consumptive use of water, m ³
$\xi_{cu} = 100 W_{cu} / W_{drz}$	W _{drz} – net amount of water depleted from the root
	zoon, m ³
Uniformity Coefficient	UC - uniformity coefficient
	y - average of the absolute values of the deviation
UC = 1 - (y/d)	in depth of water infiltrated or caught, m
- /	d - average depth of water infiltrated or caught, m

IRRIGATION REQUIREMENT

Water Applied $Q = 27.8 \text{ A D / T}$	Q - size of stream, lps A - area irrigated, hectares D - depth of water applied, cm T - time required to irrigate, hours
Time of Application $T = \frac{P_w A_s D A}{100 C Q}$	T - time of application, hours P _w - soil moisture in dry weight, % A _s - apparent specific gravity, decimal D - depth of root zone, cm A - area irrigated, hectares Q - size of stream, cubic m per hour C - constant equal to 100
Evapotranspiration $ET = E + T$	ET – evapotranspiration, mm/day E – evaporation, mm/day T - transpiration, mm/day
Water Requirement $WR = ET + P$	WR – water requirement, mm/day ET - evapotranspiration. mm/day P - percolation, mm/day

IRRIGATION REQUIREMENT

Irrigation Requirement $IR = WR + FW - ER$	IR – irrigation requirement, mm/day WR – water requirement, mm/day FW - farm waste, mm/day ER - effective rainfall, mm/day
Farm Turnout Requirement FTR = IR + FDL	FTR – farm turnout requirement, mm/day IR - irrigation requirement, mm/day FDL – farm ditch loss, mm/day
Diversion Requirement $DR = FTR + CL$	DR – diversion requirement, mm/day FTR – farm turnout requirement, mm/day CL – conveyance loss, mm/day

MATERIAL HANDLING

Belt Capacity C – capacity, bu/hr A – Area of cross-section of belt, m^2 S – Belt speed, m/minHorsepower to Drive Empty Belt Conveyor HP_e – horsepower (empty), hp S – belt speed, m/min A – constant, 0.20 to 0.48 @ 36-76 belt width B – constant, 0.00140 to 0.00298 @ 36-76 belt width L – belt length, m
$C = 1710 \text{ A S}$ $A - \text{Area of cross-section of belt, m}^2$ $S - \text{Belt speed, m/min}$ $HP_e - \text{horsepower (empty), hp}$ $S - \text{belt speed, m/min}$ $A - \text{constant, 0.20 to 0.48 @ 36-76 belt width}$ $A - \text{constant, 0.00140 to 0.00298 @ 36-76 belt}$ $HP_e = + +$
$C = 1710 \text{ A S}$ $S - \text{Belt speed, m/min}$ $HP_e - \text{horsepower (empty), hp}$ $S - \text{belt speed, m/min}$ $A - \text{constant, 0.20 to 0.48 @ 36-76 belt width}$ $HP_e = \frac{\text{S}}{\text{HP}_e} + \frac{\text{A+B (3.28L)}}{\text{width}}$ $HP_e = \frac{\text{S}}{\text{HP}_e} + \frac{\text{A+B (3.28L)}}{\text{width}}$
Horsepower to Drive Empty Belt Conveyor $S - belt speed, m/min$ $A - constant, 0.20 to 0.48 @ 36-76 belt width$ $B - constant, 0.00140 to 0.00298 @ 36-76 belt$ $Width$ Width
S - belt speed, m/min A - constant, 0.20 to 0.48 @ 36-76 belt width B - constant, 0.00140 to 0.00298 @ 36-76 belt width width
S - belt speed, m/min A - constant, 0.20 to 0.48 @ 36-76 belt width B - constant, 0.00140 to 0.00298 @ 36-76 belt width width
A – constant, 0.20 to 0.48 @ 36-76 belt width B – constant, 0.00140 to 0.00298 @ 36-76 belt width
A – constant, 0.20 to 0.48 @ 36-76 belt width B – constant, 0.00140 to 0.00298 @ 36-76 belt width
$HP_e = \frac{S}{} + \frac{A+B (3.28L)}{$
$HP_e = +$ width
0.3048 100 L – belt length, m
Horsepower to Convey Materials in HP ₁ - horsepower to drive belt conveyor on
Belt Conveyor on Level Position level position, hp
C – belt capacity, tph
1 7 1
0.48 + 0.01 L L – belt length, m
$HP_1 = C \times $
100
Horsepower to Lift Materials in Belt HP _h – horsepower to lift materials, hp
Conveyor $h - lift, m$
C – capacity, tph
h C
$HP_h =x \ 1.015 \ x$
0.3048 1000

MATERIAL HANDLING

Total Horsepower of Belt Conveyor	HP _t – total horsepower, hp
Total Horsepower of Belt Conveyor	
	HP _e – power to drive empty, hp
$HP_t = HP_e + HP_1 + HP_h$	HP ₁ – power to drive in level, hp
	HP _h – power to lift materials, hp
Capacity of Screw Conveyor	C – capacity of screw conveyor, ft ³ /hr
	D – screw diameter, in.
$C = \frac{(D^2 - d^2)}{} \times P \times N$	D – shaft diameter, in
C = $x P x N$	P – screw pitch, in (normally equal to D)
36.6	N – shaft speed, rpm
	1 / 1
Power Requirement of Screw Conveyor	HP – horsepower requirement, hp
-	L – overall length, ft
L(DS+QK)	D – bearing factor, 10 to 106 for ball bearing @
$HP = \frac{L (D S + Q K)}{$	conveyor diameter of 7.5 to 40 cm
1,000,000	S – Speed, rpm
	Q – quantity of materials, lbs/hr
	K –material factor, 0.4 to 0.7
Motor Horsepower of Screw Conveyor	MHP – motor horsepower, hp
	HP – power requirement, hp
HP P	P-2 when HP is less than 1; 1.5 when HP is
MHP =	between 1 and 2
0.85	

MATERIAL HANDLING

Horsepower Requirement when	HP _i – power requirement when screw is in inclined
Screw is Inclined Position	* *
Screw is inclined Position	position, hp
	HP _h – power requirement in horizontal
$HP_i = HP_h \sin \alpha$	position, hp
	α - inclination of the screw, deg
Bucket Elevator Speed	N – speed of the head pulley, rpm
	R – radius of wheel plus ½ the projection of bucket,
54.19	ft
N =	
$N = {R^{0.5}}$	
Bucket Velocity	V _b - velocity of bucket, fpm
	D - pulley diameter, feet
$V_b = \pi D N$	N - pulley speed, rpm
V _b N D IV	rv paney speed, ipin
Bucket Capacity	C – elevator capacity, m ³ /hr
Bucket Capacity	Q_b – bucket capacity, $m^3/1,000,000$
	n_b – number of buckets per meter of belt
C = 60 O m S	*
$C = 60 Q_b n_b S_b$	S _b – belt speed, m/min
Hawsanayyan Daguinamant of	IID power requirement by
Horsepower Requirement of	HP – power requirement, hp
Bucket Elevator	Q – bucket elevator capacity, kg/min
0. 77. 7	H – lift, m
Q H F	F - 1.5 for elevator loaded in down side; 1.2 for
HP =	elevator loaded in up side
4562	

PIPE FLOW

Flow from Vertical Pipe (50-200 mm Pipe Diameter with H = 0.075 to 0.1m) $Q = \frac{0.87 D^2 H^{1/2}}{287}$	Q - pipe discharge, lps D - pipe diameter, mm H - vertical rise of water jet, m
Flow from Vertical Pipe (50-200 mm Pipe Diameter with H = 0.3 to 0.6m) $Q = \frac{0.97 D^2 H^{1/2}}{287}$	Q - pipe discharge, lps D - pipe diameter, mm H - vertical rise of water jet, m
Flow from Horizontal Pipe $Q = 3.6 \frac{A X}{y^{\frac{1}{2}}}$	 Q - discharge, gpm A - cross sectional area of water at the end of the pipe, in2 X - coordinate of the point on the surface measured parallel to the pipe, in y - vertical coordinate, in

POWER TILLER

$\%BS = \frac{N_0 - N_1}{N_0} \times 100$	$BS-belt slip, \% \\ N_0-revolution per minute of the driven pulley \\ without slip, rpm \\ N_1-revolution per minute of the driven pulley \\ under load, rpm$
Wheel Slip $\% \text{ WS} = \frac{\text{Nw}_1 - \text{Nw}_0}{\text{Nw}_1} \text{x 100}$	Nw ₁ – sum of the revolutions of all driving wheels for a given distance with slip, rpm Nw ₀ – sum of the revolutions of all driving wheels for the same distance without slip, rpm
Average Swath or Width of Cut	S – average swath, m W – is the width of plot, m
W	n – is the number of rounds
$S = \frac{W}{}$	2 – is the number of trips per round
2n	
Total Distance Traveled	D – distance traveled, m
	$A - is$ the area of plot, m^2
A	L – is the length of the plot, m
$D = \frac{1}{C} = 2nL$	S – average swath, m
S	n – is the number of rounds

POWER TILLER

Effective Area Accomplished	A _e – effective area accomplished, m ²
	w – width of plow or rotary tiller, m
$A_e = wD = 2nLw$	D – distance traveled, m
	L – is the length of the plot, m
The width of swath is less than the	n – is the number of rounds
plow's or rotary tiller's width	A_0 – overlap (area which is plowed or rototilled
	twice), m ²
$A_0 = A_e - A$	A _u – unplowed or rototilled area (area missed), m ²
	A – area of the field, m^2
The width of swath is greater than the	
plow's or rotary tiller's width	
$A_u = A - A_e$	
Effective Field Capacity	EFC – effective field capacity, m ² /hr
	A _e – effective area accomplished, m ²
60A _e	t – time used during the operation, min
EFC =	
t	
Theoretical Field Capacity	TFC – theoretical field capacity, m ² /hr
	w _e – effective or theoretical width of tillage, m
$TFC = w_e v$	v – speed of operation, m/h

POWER TILLER

Field Efficiency	F _{eff} – field efficiency, %
•	EFC – effective field capacity, ha/hr
EFC	TFC – theoretical field capacity, ha/hr
	1FC – theoretical field capacity, fia/fii
$F_{\text{eff}} = x 100$	
TFC	
Fuel Consumption	FC – fuel consumption, lph
The second second	V – volume of fuel consumed, L
V 7	,
V	t – total operating time, h
$FC = \frac{V}{t}$	
t	
Axle/Rotary Shaft Torque	T – shaft torque, kg-m
	F – axle or rotary shaft load, kg
T=F L	=
I-F L	L – length of pony brake arm, m
Axle/Rotary Shaft Power	P – shaft power, KW
	F _t – total axle or rotary shaft load, kg
F. N	N – speed of axle or rotary shaft, rpm
$P = \frac{F_t N}{}$	speed of diffe of folding share, ipin
1340	
Specified Fuel Consumption	SFC – specific fuel consumption, (g/KW-h)
	F _c – fuel consumption, L/h
F_c P_f	P _f – density of fuel, g/h
$SFC = \frac{F_c P_f}{}$	P – axle or rotary shaft power, KW
Dr.C.	1 - axic of folary shall power, Kw
P	

PUMP

Fluid Horsepower	Fhp – fluid horsepower, hp
q y H	q – flow rate, cfs
$Fhp = \frac{1}{m}$	γ – fluid specific weight, lb per cu ft
550	H – total head, ft
Hydraulic Efficiency	ξh – hydraulic efficiency, %
	H – head, ft
H Q	Q – mass flow rate, lb/min
$\xi_{\rm h} = - x 100$	P – power input, hp
P 33000	
Pump Discharge Requirement	Q – pump discharge requirement, gpm
	A – design irrigable area, hectares
A D	D – depth of irrigation, inches
$Q = 183.4 \frac{A D}{}$	F – number of days permitted for irrigation,
F H	days
	H – average number of hours of operation,
	hours per day
Water Horsepower	P _w – water horsepower, hp
	Q – discharge, lps
QH	H – total head, m
$P_{w} = \frac{Q H}{}$	
102	

PUMP

Pump Brake Horsepower	BHP – pump brake horsepower, hp
_	P _w – water horsepower, hp
$BHP = P_{w} / \xi_{p}$	ξ_p - pump efficiency, decimal
Pump Motor Horsepower	MHP – motor horsepower, hp
	BHP – pump brake horsepower, hp
$MHP = BHP / \xi_m$	ξ_{m} - motor efficiency, decimal
Engine Horsepower	EHP – engine horsepower, hp
	BHP – pump brake horsepower, hp
$EHP = BHP / \xi_m$	ξ_m - engine efficiency, decimal 80% for diesel and 70%
	for gasoline
Overall System Efficiency	ξ_s - overall system efficiency, %
	P _w – water horsepower, hp
$\xi_{\rm s} = (P_{\rm w} / MHP) 100$	MHP – motor horsepower, hp
Total Pump Head	H_t – total head loss, ft
	H _s – head loss due to elevation, ft
$H_{t} = H_{s} + (HL_{sp} + HL_{f})$	HL _{sp} – friction loss on straight pipe, ft
	HL _f – head loss on fittings, ft
Innut Dayyon Daliyanad to	D. nower input delivered to nump VW
Input Power Delivered to	P _i - power input delivered to pump, KW
Pump	q - discharge rate, m ₃ /s h - total heat, m
$P_{i} = 9.8 q h / \xi_{p}$	·
$r_i = 9.8 \text{ q II} / \zeta_p$	ξ_p - pump efficiency, 0.20 to 0.75
Pump Specific Speed	N _s - specific speed
	C - 51.65
$N_s = C N q^{\frac{1}{2}} / h^{\frac{3}{4}}$	N – impeller speed, rpm
	q - flow rate, m^3/s
	h - head, m

PUMP LAWS

Speed vs Capacity	N ₁ – pump speed, rpm
	N_2 – pump speed, rpm
$N_1/N_2 = q_1/q_2$	q ₁ – pump capacity, gpm
	q ₂ – pump capacity, gpm
Speed vs Head	N ₁ – pump speed, rpm
2 . 2	N_2 – pump speed, rpm
$N_1^2/N_2^2 = H_1/H_2$	H_1 – pump head, ft
	H_2 – pump head, ft
Speed vs Power	N ₁ – pump speed, rpm
N 3 (N 3	N ₂ – pump speed, rpm
$N_1^3/N_2^3 = Hp_1/Hp_2$	Hp ₁ – pump head, ft
	Hp ₂ – pump head, ft
Impeller Diameter vs Capacity	D ₁ – pump diameter, inches
impener Diameter vs Capacity	D_2 – pump diameter, inches
$D_1^3/D_2^3 = q_1/q_2$	q ₁ – pump capacity, gpm
-1 -2 -41 - 42	q_2 – pump capacity, gpm
	12
Impeller Diameter vs Head	D ₁ – pump diameter, inches
	D ₂ – pump diameter, inches
$D_1^2/D_2^2 = H_1/H_2$	H ₁ – pump head, ft
	H ₂ – pump head, ft
Impeller Diameter vs Horsepower	D_1 – pump diameter, inches
5 . 5	D_2 – pump diameter, inches
$D_1^{5}/D_2^{5} = Hp_1/Hp_2$	Hp ₁ – pump power, hp
	Hp ₂ – pump power, hp

PUMP LAWS

Capacity vs Speed and Diameter $q_1 / q_2 = (N_1 / N_2) (D_1^3 / D_2^3)$	$\begin{array}{c} q_1 - \text{pump capacity, gpm} \\ q_2 - \text{pump capacity, gpm} \\ N_1 - \text{pump speed, rpm} \\ N_2 - \text{pump speed, rpm} \\ D_1 - \text{pump diameter, inches} \\ D_2 - \text{pump diameter, inches} \end{array}$
Head vs Speed and Diameter $H_{1}/H_{2} = (N_{1}^{2}/N_{2}^{2}) (D_{1}^{2}/D_{2}^{2})$	H_1 – pump head, ft H_2 – pump head, ft N_1 – pump speed, rpm N_2 – pump speed, rpm D_1 – pump diameter, inches D_2 – pump diameter, inches
Horsepower vs Speed and Diameter $Hp_1/Hp_2 = (N_1^3/N_2^3)(D_1^5/D_2^5)$	Hp_1 – pump power, hp Hp_2 – pump power, hp N_1 – pump speed, rpm N_2 – pump speed, rpm D_1 – pump diameter, inches D_2 – pump diameter, inches

RAINFALL AND RUNOFF

Rainfall Intensity	I - rainfall intensity, mm/hr
$I = (a T^b) / d^c$	T – return period, years d – storm duration, min a, b, and c – constant for a given location
Point Rainfall Analysis (Simple Arithmetic	R _{ave} – average rainfall, mm
Method)	R - rainfall record, mm n - number of rainfall stations
$R_{ave} = \Sigma R / n$	
Point Rainfall Analysis (Thiessen Method)	R _{ave} – average rainfall, mm
$A_1R_1 + A_2R_2 + \ldots + A_nR_n$	R - rainfall depth, mm
$R_{ave} = $	A _{1-n} - area within the polygon, m ²
A_{t}	A_t – entire area of the basin, m^2
Runoff (Rational Method)	Q - peak discharge, m ³ /sec
	C - runoff constant, 0.05 to 0.95
Q = C I A / 360	I - rainfall intensity, mm/hr
	A – drainage area, hectare
Time of Concentration	T _c - time of concentration, min
	L – length of channel, m
$T_c = 0.0196 L^{1.15} H^{-0.385}$	H - difference in elevation, m

REAPER HARVESTER

Star Wheel Velocity	V _w - average star wheel velocity, m/s
	V _f - machine forward velocity, m/s
$V_{\rm w} = V_{\rm f}/\cos\alpha$	α - angle of inclination of star wheel, 22 deg
Flat Belt Conveyor Velocity	V _b - flat belt conveyor velocity, m/s
	V_{wo} - velocity of outer tip of star wheel lugs,
$V_b = V_{wo} P N / \pi$	m/s
	P - pitch of the flat belt lugs, m
$V_b = 1.4 V_f$	N – number of star wheel lugs
	V _f - machine forward velocity, m/s
Pitch of the Flat belt Lugs	P - pitch of the flat belt lugs, m
	D - diameter of star wheel, m
$P < D \sin(\pi/N)$	N - Number of star wheels
Velocity Ratio	K - velocity ratio
	V _k - average knife velocity, m/s
$K = V_k / V_f$	V _f - average forward velocity, m/s
k falls 1.3 to 1.4	

REFRIGERATION

Heat Gain on Walls	Qw - heat gain from walls, W
	A - wall surface area, m ²
$Q_{w} = A R_{t} (T_{o} - T_{i})$	R _t - thermal transmittance, W/m-°C
	T _o – wall outside temperature, °C
	T _i - wall inside temperature, ° C
Air Infiltration Load	Q _{ai} - air infiltration loss, W
	V _r - room volume, m ³
V_r H_f AC	H _f - heat factor, J
$Q_{ai} = \overline{}$	AC - Air changes, KJ/m ³
86400	
Product Load	Q _p - product load, W
	W _p - weight of the product, kg
$Q_p = W_p C_p (T_i - T_f) / 86400$	C _p - specific heat of the product, J/kg-°C
	T _i – product initial temperature, °C
	T _f - product final temperature, °C
Heat of Respiration Load	Q _r - heat of respiration load, W
	W _p – weight of the product, kg
$Q_r = W_p HR_p / 86400$	HR _p – product heat of respiration, J/kg-day

REFRIGERATION

Light Load	Q ₁ - light load, W
0 - 1	L _r - lamp rating, W
$Q_1 = L_r$	
Human Heat Load	Q _h - human heat load, W
	N _h - number of human
$Q_h = N_h HR_h / 86400$	HR _h - heat of respiration of human, J/man-day
Tons of Refrigeration	TR - refrigeration capacity, tons of ref
	TL – total load, BTU/hr
TR = TL / 12,000	
Latent Heat of Freezing	Q _{lf} - latent heat of freezing water, KJ
	M _w - mass of water, kg
$Q_{lf} = M_w LHF$	LHF - Latent heat of freezing, 336 KJ/kg

RICE MILLING

Hulling Coefficient	C _h – hulling coefficient, decimal
	W _{br} – weight of brown rice, grams
$C_h = W_{br} / W_{p}$	W _p – weight of paddy, grams
Ch Wbi / Wb	Weight of paddy, grains
Wholeness Coefficient	C _w – wholeness coefficient, decimal
	W _{wbr} – weight of whole brown rice, grams
$C_{\rm w} = W_{\rm wbr} / W_{\rm br}$	W _{br} – weight of brown rice, grams
Hulling Efficiency	ξ_h – hulling efficiency, decimal
	C _h – hulling coefficient, decimal
$\xi_{\rm h} = C_{\rm h} C_{\rm w}$	C _w – wholeness coefficient, decimal
Percentage Brown Rice Recovery	%BRR – percentage brown rice recovery, %
	W _{brr} – weight of brown rice, kg
$\% BRR = (W_{brr} / W_p) \times 100$	W _p – weight of paddy, kg
Percentage Broken Milled Rice	%BR – percentage broken rice, %
	W _{br} – weight of broken rice, kg
$%BR = (W_{br} / W_{mr}) 100$	W _{mr} – weight of milled rice, kg
Throughput Capacity	C _t - throughput capacity, kg/hr
	W _p – weigh t paddy input, kg
$C_t = 0.2 W_p / T_o$: brown rice	T _o - operating time, hr
$C_t = [W_p MR]/T_o$: milled rice	MR – milling recovery, decimal
	0.60 to 0.69

RICE MILLING

Percentage Brewer's Rice	%BrR – percentage brewer's rice, %
_	W _{brr} – weight of brewer's rice, kg
$%BrR = (W_{brr} / W_{mr}) 100$	W _{mr} – weight of milled rice, kg
Hear Rice Recovery	%HR – head rice recovery, %
0/HD /W/ /W/) 100	W _{hr} – weight of head rice, kg
$%HR = (W_{hr}/W_{mr}) 100$	W _{mr} – weight of milled rice
Milling Recovery	% MR – milling recovery, %
·	W _{mr} – weight of milled rice, %
$\% MR = (W_{mr} / W_p) 100$	W _p – weight of paddy, kg
Speed of Low Speed Rubber Roller	N_s - speed of slower rubber roller, rpm
	N _h - speed of faster rubber rollre, rpm
$N_s = N_h - [0.25 / N_h]$	
Number of Compartments for Paddy	$N_{\rm C}$ - number of compartments
Separator	C _b - throughput capacity, kg brown rice per
	hour
$N_C = C_b/40$: long grain	
$N_C = C_b / 60$: short grain	
Number of Brake for Vertical	N _B – number of brakes, units
Abbrassive Whitener	D - cone diameter, mm
$N_B = [D / 100]$: Germany	
$N_B = [D / 100]$: Itally	

RICE THRESHER

Grain Ratio	R – grain ratio, decimal W_g – weight of grain, grams
$R = (W_g/W_{gs})$	W _{gs} – weight of grain and straw, grams
Actual Capacity	C _a – actual thresher capacity, kg/hr W _c -weight of threshed clean grain, kg
$C_a = W_c/T_o$	T _o – operating time, hr
Corrected Capacity $C_c = \frac{100 - MC_o}{100 - MC_r} \times \frac{R_m}{R_o} \times C_a$	$\begin{array}{c} C_c - \text{corrected capacity, kg/hr} \\ MC_o - \text{observed moisture content, \%} \\ MC_r - \text{reference MC, 20\%} \\ R_m - \text{ reference grain-straw ratio, 0.55} \\ R_o - \text{observed grain-straw ratio, decimal} \\ C_a - \text{actual capacity, kg/hr} \end{array}$
Purity $P = \left[1 - \frac{W_u - W_c}{W_c}\right] 100$	$P-$ purity, % W_u- weight of uncleaned grain, grams W_c- weight of cleaned grains, grams

RICE THRESHER

Total Losses $L_t = L_b + L_s + L_u + L_{sc}$	$\begin{array}{c} L_t - total \ losses, kg \\ L_b - blower \ loss, kg \\ L_s - separation \ loss, kg \\ L_{sc} - scattering \ loss, kg \\ L_u - unthreshed \ loss, kg \end{array}$
Threshing Efficiency $\xi_t = \frac{W_c + L_b + L_s + L_{sc}}{W_c + L_b + L_s + L_u + L_s} \times 100$	$\begin{array}{l} \xi_t-\text{threshing efficiency,} \\ W_c-\text{weight of clean threshed grain, kg} \\ L_b-\text{blower loss, kg} \\ L_s-\text{separation loss, kg} \\ L_{sc}-\text{scattering loss, kg} \\ L_u-\text{unthreshed loss, kg} \end{array}$
Threshing Recovery $T_r = \frac{W_c}{W_c + L_b + L_s + L_u + L_s} \times 100$	$T_r - \text{threshing recovery, \%} \\ W_c - \text{weight of clean threshed grain, kg} \\ L_b - \text{blower loss, kg} \\ L_s - \text{separation loss, kg} \\ L_{sc} - \text{scattering loss, kg} \\ L_u - \text{unthreshed loss, kg} \\ $

RICE THRESHER

Cracked Grains	C _g – percentage cracked grains, %
$C_{\rm g} = N_{\rm cg} \ 100 \ / \ (N_{\rm cg} + N_{\rm ucg})$	$N_{\rm cg}$ – number of cracked grains $N_{\rm ucg}$ – number of uncracked grains
Damaged Grain	D _g – percentage damage grains, %
$D_g = N_{dg} 100 / (N_{dg} + N_{udg})$	N_{dg} – number of damaged grains N_{udg} – number of undamaged grains
Fuel Consumption	F _c – fuel consumption, Lph
$F_c = F_u / T_o$	F _u - amount of fuel used, liters T _o - operating time, hrs

SHAFT, KEY, AND KEWAYS

	xxp 1
Horsepower Transmitted	HP – horsepower transmitted, hp
-	T – torque, in-lb
	± ′
HP = T N / 63025 or	N – shaft speed, rpm
	• • •
XXD - F-XX / 22000	
HP = F V / 33000	
Torque (Solid Shaft)	T – torque, in-lb
Torque (Sona Shart)	± ′
	D – shaft diameter, inches
$= c D^3$	S _d – design stress, 6000 psi
$n S_d D$	Sd - design sucss, 6000 psi
$T = \frac{\pi S_d D^3}{}$	
16	
10	
Torque (Hollow Shaft)	T – torque, in-lb
- · · · · · · · · · · · · · · · · · · ·	± ′
	D – shaft diameter, inches
$\pi S_d (D_o^4 - D_i^4)$	S _d – design stress, 6000 psi
T =	
1	
16 D _o	
· ·	

SHAFT, KEY, AND KEWAYS

Shaft Diameter (Solid Shaft) $D = \sqrt[3]{\frac{16 \text{ T}}{\pi \text{ S}_d}}$	D – shaft diameter, inches T – torque, in-lb S _d – design stress, 6000 psi
Shaft Force $F = T/r$	F – force at shaft forces, lb T – torque, in-lb r – radius of shaft, in
Length of Key $L = \frac{F}{\sigma_{allow} W}$	$\begin{array}{c} L-\text{length of key, in} \\ F-\text{force, lb} \\ \sigma_{\text{allow}} \text{ - bearing stress, 25,000 psi} \\ W-\text{width of key, in} \end{array}$
Length of Key (In Shear) $L = \frac{3 \text{ F}}{\tau_{all} \text{ W}}$	$L-$ length of key, in $F-$ force, lb τ_{all-} allowable shear, 25,000 psi $W-$ width of key, in

SOIL, WATER, PLANT RELATIONS

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Porosity	P - porosity, %
$V_{V} = V_{V} / V_{s}$ $V_{V} = V_{w} / V_{v}$ $V_{V} = V_{w} / V_{w}$ V_{V	$P = V_v 100 / V$	V _v - volume of voids, cm ³ V - total volume of soil column, cm ³
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Void Ratio	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{VP} - \mathbf{V} / \mathbf{V}$	
$\begin{aligned} \textbf{DS} &= V_w / V_v \\ \textbf{DS} &= V_w / V_v \end{aligned} \qquad \begin{aligned} V_w &- \text{volume of water, cm}^3 \\ V_v &- \text{volume of voids, cm}^3 \end{aligned}$ $\begin{aligned} \textbf{Specific Gravity} \\ \gamma_s &= \text{specific gravity of entire soil column} \\ W_{sc} &- \text{unit weight of entire soil column, g/cc} \\ W_w &- \text{unit weight of water, g/cc} \end{aligned}$ $\begin{aligned} \textbf{Soil Moisture Content by Volume} \\ \textbf{Basis} \end{aligned} \qquad \begin{aligned} P_v &- \text{moisture content by volume, } \% \\ V_w &- \text{volume of water, cm}^3 \\ V_t &- \text{total volume of soil sample, cm}^3 \end{aligned}$	$\mathbf{v}_{\mathbf{K}} - \mathbf{v}_{\mathbf{v}} / \mathbf{v}_{\mathbf{s}}$	V _s - volume of sond, cm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Degree of Saturation	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\gamma_s = W_{sc} / W_w$ $W_{sc} - \text{unit weight of entire soil column, g/cc}$ $W_w - \text{unit weight of water, g/cc}$ $P_v - \text{moisture content by volume, \%}$ $V_w - \text{volume of water, cm}^3$ $V_t - \text{total volume of soil sample, cm}^3$	$DS = V_w / V_v$	V _v - volume of voids, cm ³
$ \begin{aligned} $	Specific Gravity	1 , 1
		, ,
$\begin{aligned} \textbf{Basis} & V_w \text{ - volume of water, cm}^3 \\ P_v &= V_w \text{ 100 / Vt} \end{aligned} \qquad \begin{aligned} V_w \text{ - total volume of soil sample, cm}^3 \end{aligned}$	$\gamma_{\rm s} = W_{\rm sc} / W_{\rm w}$	W _w - unit weight of water, g/cc
$\begin{aligned} \textbf{Basis} & V_w \text{ - volume of water, cm}^3 \\ P_v &= V_w \text{ 100 / Vt} \end{aligned} \qquad \begin{aligned} V_w \text{ - total volume of soil sample, cm}^3 \end{aligned}$		
$P_{\rm v} = V_{\rm w} \ 100 \ / \ Vt$ $V_{\rm t}$ - total volume of soil sample, cm ³	<u>.</u>	
$P_{\rm v} = V_{\rm w} \ 100 \ / \ Vt$	Basis	
Soil Moisture Content by Volume D maisture content volume hasis 0/	$P_{\rm v} = V_{\rm w} 100 / Vt$	V _t - total volume of son sample, cm
Son violsture Content by volume P _v - moisture content volume basis, %	Soil Moisture Content by Volume	P _v - moisture content volume basis, %
Basis P _w – moisture content weight basis, %	Basis	,
$P_v = P_w A_s$ A_s - apparent specific gravity	$P_v = P_w A_s$	A _s - apparent specific gravity

SOIL, WATER, PLANT RELATIONS

Depth of Water	d - depth of water, mm
	P _v – moisture content by volume, %
$d = P_v D_{rz} / 100$	D_{rz} - depth of root zone, mm
Douth of Water	d donth of water mm
Depth of Water	d - depth of water, mm
	P _w - moisture content by weight, %
$d = P_w A_s D_{rz} / 100$	A _s – apparent specific gravity, decimal
	D_{rz} – depth of root zone, mm
	,
Total Available Moisture	TAM - total available moisture, %
	FC - moisture content at filed capacity, %
TAM = FC - PWP	PWP - moisture content at permanent wilting
	point, %
	• ,
Moisture Range	MR - moisture range, %
	RAM – readily available moisture, %
MR = RAM - TAM	TAM – total available moisture, %
	, , , , , , , , , , , , , , , , ,

SOIL AND WATER CONSERVATION ENGINEERING

General formula for water yields of	Q – rate of flow, ft^3/day
wells	K – hydraulic conductivity
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	H – height of the static water level above the
$\pi K (H^2 - h^2)$	bottom of water bearing formation, ft
$O = \frac{m \cdot m \cdot m}{m \cdot m \cdot m}$	h – height of water level at the ell measured from
$Q = \frac{\pi K (H^2 - h^2)}{Log_e R/r}$	the water bearing formation, ft
Eoge 101	R – radius of influence, ft
	R – radius of the well
Water yield of a confined and	The reading of the Well
unconfined well	
W-1002-1-1-00 (102-1	
$2 (\pi) k t(h_c - h_w)$	
O =	
$Q = \frac{2 (\pi) k t(h_c - h_w)}{2.3 \log_{10} (T_e/T_w)}$	
210 (C ")	
Flow measurement	Q – discharge, m ³ /sec
	A – cross sectional area of water, m ²
Q = AV	V – mean velocity of water, m/sec
Average stream discharge	Q _{ave} - average discharge, m ³ /sec
	A_{ave} - average stream cross-sectional area, m ²
$Q_{ave} = 2/3 (A_{ave}) (V_{ave})$	V _{ave} – maximum stream velocity, m/sec
Weirs and orifices	Q – discharge
	C – coefficient dependent on the nature of the
$Q = C L h^m$	crest and approach condition
	L – length of crest
	h ^m – head of the crest, and the exponent "m" is
	dependent upon the shape of the weir opening

Orifice under head	Q – discharge, m ³ /sec
Orifice under head	
0 0 10 1	A – cross-sectional area of the orifice
$Q = CA\sqrt{2gh}$	$g-32.2 \text{ ft/sec}^2$
	h – height (depth) of water from surface down
	to the orifice area
Submerged orifice	q – discharge, m ³ /sec
	A – cross-sectional area of the orifice
$q = 0.61 \text{ A}\sqrt{2gh}$	$g - 32.2 \text{ ft/sec}^2$
	h – depth of water
Rectangular weir	Q – discharge, m ³ /sec
	C – coefficient of roughness
$Q = 2CLh\sqrt{2gh}$	L –
$Q = 2CLh^{3/2}gh$	h – depth of water
Q ZCEN gii	$g - 32.2 \text{ ft/sec}^2$
Partly-filled orifice	Q – discharge, m ³ /sec
1 at try-fined of file	h – depth of water
0 = 21-1	ii – deptii of water
Q = 2hL	
Trapezoidal weir	
2 42 **5/2	
$Q = 2.49 \text{ H}^{5/2}$	
Triangular notch weir	
5/0	
$Q = 2.49 \text{ H}^{5/2}$	
Velocity formula	V – average velocity, ft/sec
	g – acceleration due to gravity
$V = \sqrt{2gh}$	h – depth of water (feet) or pressure head

	** 1 . 0/
Manning velocity equation	V – velocity, ft/sec
	n – roughness coefficient
$V = 1.486/n R^{2/3} S^{1/2}$	R – hydraulic radius of the channel, m
	S – slope/gradient of the channel
Chezy velocity formula	C – coefficient of roughness
	R – hydraulic radius
$V = C \sqrt{R \times S}$	S – slope of water surface, gradient or piezometric
	head line
Best hydraulic radius croo-section	b – bottom width of the channel
	d – depth of water flow
$b = 2 d \tan \theta/2$	θ – side slope of the channel
Water floe for vertical pipe	Q – discharge, li/sec
	D – inside pipe diameter, mm
$K D^2 H^{1/2}$	H – vertical rise of water jet, m
$Q = \frac{K D^2 H^{1/2}}{}$	* * '
	H – vertical rise of water jet, m
Q =	H – vertical rise of water jet, m k – discharge coefficient varying from: 0.87 for
Q =	H – vertical rise of water jet, m k – discharge coefficient varying from: 0.87 for height of 75 mm to 100 mm, 0.97 for height of 0.3 m
Q =	H – vertical rise of water jet, m k – discharge coefficient varying from: 0.87 for height of 75 mm to 100 mm, 0.97 for height of 0.3 m to 0.6 m in pipe of 50 to 200 mm in diameter
Q = 287 Flow of water in a horizontally-	H – vertical rise of water jet, m k – discharge coefficient varying from: 0.87 for height of 75 mm to 100 mm, 0.97 for height of 0.3 m to 0.6 m in pipe of 50 to 200 mm in diameter Q – discharge, gal/min
Q = 287 Flow of water in a horizontally-	H – vertical rise of water jet, m k – discharge coefficient varying from: 0.87 for height of 75 mm to 100 mm, 0.97 for height of 0.3 m to 0.6 m in pipe of 50 to 200 mm in diameter Q – discharge, gal/min A – cross-sectional area at the end of the pipe, in ²
Q =	H – vertical rise of water jet, m k – discharge coefficient varying from: 0.87 for height of 75 mm to 100 mm, 0.97 for height of 0.3 m to 0.6 m in pipe of 50 to 200 mm in diameter Q – discharge, gal/min A – cross-sectional area at the end of the pipe, in D – pipe diameter, ft

Water flow in siphon tubes and	Q – siphon discharge, gal/min
pipes	A – cross-sectional area of the siphon tube, ft ²
	h – suction head, ft
$Q = 0.65 \text{ A} \sqrt{2gh}$	
Maximum discharge/flow in	Q – maximum non-erosive stream, gal/min
furrows	S – slope/gradient of the land/furrow, %
Q = 10/S	
Length of furrows	L – safe length of furrow, ft
	I – rainfall intensity, in/hr
1,000	A – absorption or infiltration rate of soil, in/hr
L =	W – furrow spacing, ft
(I-A)WS	S – slope/gradient of furrow, %
Intake rate of soil	I – intake rate of soil
	t – time rate that water is on the surface of the soil
I = K t n	K – intake rate intercept at unit time
	n – slope of the line (vertical scaled distance divided
	by the horizontal scaled distance
Design parameters/formulas in	V_t – volume of water on the surface of the soil t time
border irrigation	$ t_1 $
	W –width of the border check
a) volume of water	D_0 – depth of water t the upper end
	C_1 – shape factor
$W [C_1D_0 + E_1]$	E – depth correction factor
$V_t = \overline{}$	E_1 – distance leading to edge in time t_1
X_1	

A decompos distance	y distance to the leading adap
Advance distance	x – distance to the leading edge
	q – unit stream size or flow per unit width of border
qt	strip
$x = \frac{qt}{}$	t – total time of flow
$[k_1D_0 + k_2 y_0]$	D_0 – depth of water at upper end
	y_0 – cumulative intake at the upper end
	k_1 – surface storage coefficient varying from 0.5 to
	less than 1.0
Percolation losses	P – percent water intake which is lost by deep
	percolation below root zone
$(R + 1)^{n+1} - R^{n+1}$	R – a time ratio
P= x 100	n – the exponent of t in the intake equation
$P = \frac{(R + 1)^{n+1} - R^{n+1}}{(R + 1)^{n+1} + R^{n+1}} \times 100$	
Unit border stream size	Q _u - unit stream, ft ³ /sec
	E_a – water application efficiency expressed as a
$Q_u = 1/E_a [t_{cr}/(t_{tcr} - t_r)] [D/7.2 t_{cr}]$	decimal, 1.0 – P where P is the percolation loss in
	decimal
	t _{cr} – time in minutes required for infiltration of D
	inches of water
	t_r - recession lag time in minutes (from the time the
	stream is cut of average area irrigated per set)
Maximum-stream size per foot	q _{mx} – maximum stream in cubic feet per second per
width of border strip	foot width of border strip
	S – lope/gradient, %
$q_{mx} = 0.06 \text{ S}^{0.75}$	o Topo Bradioni, 70
qmx 0.00 B	
Minimum stream size per foot	q _{min} – maximum stream in cubic feet per second per
width of strip	foot width of border strip
With or strip	S – slope/gradient, %
$Q_{min} = 0.004 \text{ S}^{0.5}$	b stope gradient, / v

Water conveyance efficiency	E _c - water conveyance efficiency
	W _t – water delivered to the farm
W_{f}	W _e – water delivered from the river or reservoir
$E_{c} = \frac{W_{f}}{} \times 100$	
W _e Water application efficiency	
Water application efficiency	E _u – water application efficiency
	W _s - water stored in the soil root zone during
$E_a = \frac{W_s}{} \times 100$	irrigation
	W _f – water delivered to the farm
W_{f}	
Water use efficiency	E _u – water use efficiency
, , , , , , , , , , , , , , , , , , , 	W _u – water beneficially used
W_{ii}	W _d – water delivered
$E_{u} = \frac{W_{u}}{} \times 100$	
W_d	
Water storage efficiency	E _a - water use efficiency
	W _s – water stored in the root zone during irrigation
$E_a = \frac{W_s}{} \times 100$	W_n – water needed in the root zone prior to
$E_a = \frac{100}{100}$	irrigation
W _n Water distribution efficiency	
Water distribution efficiency	E _d – water distribution efficiency
	y – average numerical deviation in depth of water
$E_d = 100 [1 - (y/d)]$	stored from average depth stored during irrigation
	d – average depth of water stored during irrigation

Consumptive use efficiency	E _{cu} - consumptive use efficiency
·	W_{cu} – normal consumptive use of water
$ m W_{cu}$	W _d - net amount of water depleted from root-zone soil
$E_{cu} = \frac{100}{100}$	•
W_d	
Rainfall intensity	I – rainfall intensity
	K, x and n – constants for a given geographic
KT^{x}	location
I =	t – duration of storm in minute
t^n	T – return period
Return period and probability of	t – return period in years
occurrence	P- probability in percent that an observed event in a
100	given year is equal to or greater than a given event
T =	
P	
Thiesen method of rainfall	P – representative average rainfall in a watershed of
determination	area A
	P_1, P_2, P_3 = rainfall depth I the polygon having areas
$A_1P_1 + A_2P_2 + A_3P_3 + + A_nP_n$	A_1 , A_2 , A_3 within the watershed
P=	
A	
Runoff rates-Rational method	q – the design peak runoff rate, m ³ /sec
	C – runoff coefficient
q = 0.0028 C I A	i – rainfall intensity in mm/hour for the design return
	period and for a duration equal to the "time of
	concentration" of the watershed
	A – watershed area, ha

Time of concentration $T_c = 0.0195 \ L \ 0.77 \ S_g^{\ 0.385}$	$\begin{tabular}{ll} Tc - time of concentration, min \\ L - maximum length of flow, m \\ S_g - the watershed gradient in m/m or the difference in elevation between outlet and the most remote point divided by the length, L \\ \end{tabular}$
Flood runoff (Chow method) $q = KA^{x}$	q – magnitude of the peak runoff (L³/T) k – coefficient depended on various characteristics of the watershed A – watershed area, L²
Runoff volume (US/SCS method) $Q = \frac{(I - 0.2S)^2}{1 + 0.8 S}$	Q – direct runoff depth, mm I – storm rainfall, mm S – maximum potential between rainfall and runoff in mm, starting at the time the storm begins
Required pump capacity for irrigation $Q = 453 \frac{Ad}{FH}$	Q – discharge, gpm A – design area, acres D – gross depth of irrigation, in. H – average umber of hours of operation per day F – number of days permitted for irrigation, days
Return period (General formula) $T = 100/P$	T – return period in years P – probability in percent that n observed event in a given year is equal to or greater than a given event

Return period (Gumbel's	T – return period in years
formula)	N – total number of statistical events
1011111111	m – rank of events arranged in descending order of
N + 1	magnitude
$T = \frac{11 \cdot 1}{}$	mugintude
m	
Dimensional flow of water	$q - flow rte (L^3/T)$
(Darcy equation)	K – hydraulic conductivity f the flow of medium (L/T)
	h – head or potential causing flow (L)
q = KhA / L	A – cross-sectional area of flow (L^2)
1	L – length of the flow path (L)
Terrace spacing	V.I. – vertical interval between corresponding points of
1 3	consecutive terraces or from the top of the slope to the
$V.I. = X_S + Y$	bottom of first terrace, m
	X – constant for geographical location
	Y – constant for soil erodability and cover condition
	during critical erosion periods
	- 0.3, 0.6, or 1.2 with the low value for highly
	erodable soils with no surface residue and the high
	value for erosion-resistant soils with conservation
	tillage
	s – average land slope above the terrace in percent

Terrace cross section	a out (I)
Terrace cross section	c – cut (L)
	f – fill (L)
c + f = h + sW	h – depth of channel including freeboard (L)
	s – original land slope (L/L)
	W – width of side slope (L)
Drop spillway capacity (free flow/ no	q – discharge in m ³ /s
submerged)	C – weir coefficient
<i>θ</i> /	L – weir length, m
$q = 0.55 C L h^{3/2}$	h – depth of flow over the crest, m
Culvert capacity (flowing full	$q - flow capacity (L^3/T)$
condition)	a – conduit cross-sectional area (L^2)
,	H – head causing flow (L)
a √ 2gH	K _e – entrance loss coefficient
0 =	K _b – loss coefficient for bends in culvert
$Q = \frac{a \sqrt{2gH}}{\sqrt{1 + K_e + K_c L}}$	
Top width of dams (those exceeding	W – top width of dam, m
3.5 meters)	H – maximum height of embankment, m
,	
W = 0.4 H + 1	
Wave height in dams	h – height of the wave from trough to crest under
6	maximum wind velocity, m
$h = 0.014 (D_f)^{1/2}$	D _f – fetch or exposure, m
Compaction and settlement – volume	V – total in-place volume (L ³)
relationship	V_s – volume of solids particles (L^3)
r	V_e – volume of voids, either air or water (L ³)
$V = V_s + V_e$	(E)

Tractive force (on the bottom of	T – tractive force (F/L^2)
open channel)	w – unit weight of water (9800 N/m ³) (F/L ³)
or comments	d – depth of flow (L)
T = wdsK	s – slope (hydraulic gradient) (L/L)
	K – ratio of the tractive force for noncohesive
	material necessary to start motion of sloping side of a
	channel to that required to start motion for the same
	on a level suface
Drainage ditches design capacity	q – runoff, m ³
	C - constnt
$q = 0.013 \text{ CM}^{0.833}$	M – watershed area, km ²
Drainage and seepage discharge	D – drainage coefficient lands in rid regions, mm/day
(from irigted lands in rid regions)	P – deep percolation from percolation and bsed on
- ASAE 1988	the maximum area to be irrigated at the same time in
	percent of irrigation application
I(P+S)	S – field canal seepage los in percent
Dc =	I – irrigation depth of application, days
1007	
Discharge equation in pipe drains	Q – maximum flow, L/s
(Pillsbury, 1985)	A – drained area, ha
0.75	
$Q = 1.56 A^{0.75}$	
Drain size	d – inside diameter, mm
0.075 0.1075	D _c – drainage coefficient, mm/day
$d = 52.2 (D_c x A x n)^{0.375} s^{-0.1875}$	A – drainage area, ha
	n – roughness coefficient
	s – drain slope, m/m

Load formula for ditch conduits	W _c - total load on the conduit per unit length
(drainage pipes)	(F/L)
	C _d – load coefficient for ditch conduits
$W_c = C_d w B_d^2$	w – unit weight of fill material, (F/L^3)
	B _d – width of ditch t top of conduit (L)
Conduit formula (for wide ditches)	C _c – load coefficient for projecting conduits
	B _c – outside diameter of the conduit (L)
$W_c = C_c w B_w^2$	
Soils loads on flexible pipes	W _c – total load on the conduit per unit length
	(F/L)
$W_{c} = C_{d}wB_{c}B_{d}$	C _d – load coefficient for ditch conduits
	w – unit weight of fill material, (F/L^3)
	B _c – outside diameter of the conduit (L)
	B_d – width of ditch at the top of conduit (L)
Volume storage of reservoir	V – volume of storage, (L^3)
	d – distance between end areas (L)
$V = d/2 (A_1 + A_2)$	A_1 and A_2 – end area (L^2)
Earthwork volumes	V_c – volume of cut (L^3)
	L – grid spacing (L)
$V_{c} = \frac{L^{2} \left(\sum C\right)^{2}}{}$	C – cut on the grid corners(L)
$V_c = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
$4\left(\sum C + \sum F\right)$	F – fill on the grid corners (L)

Prismoidal formula	A _m – middle are halfway between the end areas
$V = d/6 (A_1 + 4A_m + A_2)$	
Storage volume (when slopes in	A_0 – area at spillway crest (L^2)
the reservoir area is given)	d – depth of water above spillway crest (L)
	S – average slope of reservoir sides and banks,
$177 d^2 A_0^{1/2}$	through range of d , %
$V = A_0 d + \frac{177 d^2 A_0^{1/2}}{}$	
S	
Sprinkler capacity	S ₁ – spacing along lateral, ft
	S _m – spacing between laterals along main in feet
S_1S_mx application rate	
Capacity =	
96.3	
Application rate	I – application rate, mm/hr
	V _g – gross amount of water applied per irrigation,
$I = \frac{V_g}{T_{sp}} = \frac{1000 \text{ x q}}{S_m \text{ x S}_e}$	mm
I =	T _{sp} – time of sprinkling, hours
T_{sp} $S_m \times S_e$	q – sprinkler discharge, m ³ /hr
	S _m – spacing between adjacent laterals, m
	S _e – sprinkler spacing along laterals, m
Irrigation interval	T – irrigation interval, day
	V – net amount of water in single irrigation not to
V	exceed the oil's water holding capacity, mm
T =	C _u – consumptive use, mm/day
C_{u}	

Number of irrigation days	T – number of irrigation days within the irrigation
· ·	
(within irrigation interval)	interval, days
	T _e – number of days moving the systems and no ater
$T = T_k \times T_e$	applied
Gross amount of water per	V _g – gros amount of water applied per irrigation
application	V – net amount of water in single irrigation not to
	exceed the holding capacity of soil
$V_g = V/E_a$	E _a – irrigation efficiency
5 "	
Sprinkler (nozzle) discharge	q – sprinkler or nozzle discharge, gpm
, ,	d_n – diameter of the nozzle orifice, in
$q = 29.85 \times C \times d_n^2 \times P^{1/2}$	P – pressure at the nozzle, psi
	C – coefficient of discharge
	- 0.95 to 0.98 for well-designed nozzles
	- 0.80 for larger nozzles
	0.00 for larger nozzies
Average area irrigated daily	A _d - average area irrigated daily, ha
	A – total area of the field, ha
$A_d = A/T_n$	T_n – number of irrigation days within the irrigation
	interval, days
Number of times the system is	· •
Number of times the system is	x – number of times the system is moved per day
moved per day	T_{sp} – time of sprinkling, hrs
$x = integer [24_{Tsp}]$	

Average areas irrigated per set	A _s – average area irrigated per set, ha
	A _d – average areas irrigated dily, ha
$A_s = A_d/x$	x – number of times the system is moved per ady
Area irrigated by a single lateral	A ₁ – area irrigated by a single lateral, ha
	L _e – effective length of lateral, m
L _e x S _m	S _m - spacing between adjacent laterals,m
A ₁ =	
1000	
Effective length of lateral	L ₁ - effective length of laterals, m
	N _{sl} – number of sprinkler along lateral
$L_1 = N_{sl} \times S_l$	S ₁ – spacing of sprinkler long lateral, m
Sprinkler system capacity	Q – system capacity
	A _s – average area irrigated per set
$Q = A_s \times I$	I – application rate
Density of sprinkler per hectare	N _{sp} – density of sprinkler per hectare
	S _m - spacing between adjacent laterals,m
10,000	S ₁ – sprinkler spacing along laterals, m
$N_{sp} = \underline{\hspace{1cm}}$	
$S_m \times S_1$	

Number of sprinkler per set	N _{sp} – number of sprinkler per set
$N_{\text{set}} = A_{\text{s}} \times N_{\text{sp}}$	A_s - average area irrigated per set N_{sp} - density of sprinklers per hectare
Number of lines in a single set	N _{ls} – number of lines/set A _s – average area irrigated per set
$N_{ls} = A_{s}/A_{l}$	A_1 – area irrigated by a single lateral
Uniformity of distribution $C_u = 100 \left[1 - \frac{\sum l \times m - m \times l}{m \times n} \right]$	

SOLAR THERMAL SYSTEM

DI AGI DILA	O D' + 1 1' + 1 111
Direct Solar Radiation in an	Q _i – Direct solar radiation, kW
Inclined Surface	Q_0 – solar constant, kW/m ²
	A – absorber surface area, m ²
$Q_i = Q_o D A \cos \alpha$	D – transmission factor, 0.06 – 0.82
	α - angle between a line perpendicular to the surface and the direction of radiation
Energy Requirement for Water	Q _n – energy needed, kJ/hr
Space Heating	m – mass of water needed to be heated per hour, kg
	C _p – specific heat of water, 4.18 kJ/kg-C
$Q_n = m C_p (T_2 - T_1)$	T ₂ – final temperature of warm water, C
	T_1 – initial temperature of water, C
Collector Area	A _c –collector area, m ²
m C _p	m – mass of water ,kg
$A_c = (T_2 - T_1)$	C _p – specific heat of water, 4.18 kJ/kg-C
η Q _o cos α	T_2 – final temperature of warm water, C
·	_{T1} – initial temperature of water, C
	η - overall efficiency of the solar plant
	Q _o – average global radiation density
	α - angle between a line perpendicular to the surface
	and the direction

SOLAR THERMAL SYSTEM

Heat Gain in the Solar	Q _g – heat gain from the solar collector, W/m ²
Collector	η - collector efficiency, % IR – Insulation rate, W/m ²
	IR – Insulation rate, W/m ²
$Q_g = \eta$ IR	
Thermal Efficiency of flat	TE – thermal efficiency, %
Plate Collector	α - heat transfer coefficient of the absorber material
	τ - transmissivity of the covering surface
T_a - T_u	β - angel between a line perpendicular to the surface and
$TE = \alpha \tau \cos \beta - \mu$	the direction of radiation, deg
-	μ - coefficient for losses through convention, conduction,
Q_{g}	and insulation
	T _a – average temp of the absober, C
	T _u – ambient air temperature, C
	Q _g – Global radiation intensity, kW/m ²

SOLID GEOMETRY

Area of Square	A_s - area of square, m^2 S - side, m
$A_s = S^2$	5 5.40, m
Area of Rectangle	A _r - area of rectangle, m ²
$A_r = W L$	W - width, m
$A_{\rm I} - W L$	L - length, m
Area of Triangle	A _t - area of triangle, m ²
	B - base, m
$A_{t} = [B H] / 2$	H - height, m
Area of Parallelogram	A _p - area of parallelogram, m ²
	B - base, m
$A_p = B H$	H - height, m
Area of Rhombus	A _{rm} - area of rhombus, m ²
	B - base, m
$A_{rm} = B H$	H - height, m
Area of Trapezoid	A _{tr} - area of trapezoid, m ²
	B ₁ - upper base, m
$A_{tr} = [B_1 + B_2] H / 2$	B ₂ - lower base, m
Avec of Civele	H - height, m
Area of Circle	A _c - area of circle, m ² D - diameter, m
$A_c = [\pi/4] D^2$	D - diameter, in
Surface Area of Cone	SA – surface area, m
3	R – radius, m
$SA = \pi RS [R^2 + H^2]^{0.5}$	H – height, m
Surface Area of Conical Frustum	SA – surface area, m
2 2 05	R1 – top radius, m
$SA = \pi (R+R2) [(R1-R2)^2 + H^2]^{0.5}$	R2 – bottom radius, m
	H – height, m
Surface Area of Sphere	SA – surface area, m
$SA = 4 \pi R^2$	R – radius, m
DIA TIVIC	

SOLID GEOMETRY

Area of Ellipse	A _e - area of ellipse, m ²
Area or Empse	
4 D D	R ₁ - smaller radius, m
$A_e = \pi R_1 R_2$	R ₂ - bigger radius, m
Volume of Cube	V _c - volume of cube, m ³
2	S - side, m
$V_c = S^3$	
Volume of Rectangular Parallelepiped	V _p - volume of parallelepiped, m ³
	L - length, m
$V_p = L W H$	W - width, m
	H - height, m
Volume of Circular Cylinder	V _c - volume of circular cylinder, m ³
•	D - diameter of cylinder, m
$V_c = [\pi D^2 H]/4$	H - height of cylinder, m
, L J	
Volume of Cone	V _{cn} - volume of cone, m ³
	R - radius of cone, m
$V_{cn} = [\pi R^2 H]/3$	H - height of cone, m
ten [w it ii], b	,
Volume of Frustum of Right Circular	V _{fc} - volume of frustum of cone, m ³
Cone	R - larger radius of frustum, m
	r - smaller radius of frustum, m
$V_{fc} = [\pi H/2][r^2 + R^2 + rR]$	H - height of frustum, m
. 10 [2.2.—] [1 10 111]	,
Volume of Pyramid	Vp – volume of pyramid, m ³
J =	L – length of base, m
Vp = 1/3 LWH	W – width of base, m
r 2,0 2 ,, 11	
	1 H = Height, III
Volume of Sphere	H – height, m V _o – volume of sphere, m ³
Volume of Sphere	V _s – volume of sphere, m ³
Volume of Sphere $V_s = 4/3 \pi R^3$	<u> </u>

SPRAYER

Application Rate	AR – application rate, liters per hectare
	Q – delivery, lpm
10000 Q	S – swath, m
AR =	V – travel speed, m/min
S V	
Sprayer Field Capacity	FC _s – theoretical field capacity, ha/hr
	S – swath, m
$FC_s = \frac{S V}{}$	V – travel speed, kph
$FC_s = \overline{}$	
10	
Actual Sprayer Field Capacity	FC _a – actual field capacity, ha/hr
	A_s – area sprayed, hectares
$FC_a = A_s / T_s$	T_s – time spent, hr
Boom Discharge per Minute	Q _b – boom discharge, lpm
	Q _n – nozzle discharge, lpm
$Q_b = Q_n N_n$	N_n – number of nozzle
Piston Displacement	D _p – piston displacement, liters
	d – diameter of the cylinder, cm
$D_{p} = \frac{\pi d^{2} L}{4 (1000)}$	L – length of actual piston travel, cm
$D_p = $	
4 (1000)	

SPRAYER

Volumetrie Efficiency	7 1 4 ° CC ° 0/
Volumetric Efficiency	$\xi_{\rm v}$ – volumetric efficiency, %
	V _a – actual volume discharge, liters
$\xi_{\rm v} = (V_{\rm a}/D_{\rm p}) 100$	D _p – piston displacement, liters
J. (a p)	P 1 1 /
Spraying Speed	V – travelling speed, m/s
	Q _d – total discharge quantity of boom
167 Q _d	sprayer, lpm
V =	S – spraying width, m
S Q	Q – spraying quantity, liters per hectare
5 4	Spraying quantity, neers per needice
Number of Sprayer Load per Hectare	L - number of loads per hectare
The state of the s	Q - application rate, liters per hectare
	C _t - tank capacity, liters per load
I = O / C	Ct - tank capacity, incis per load
$L = Q / C_t$	

SPRINKLER IRRIGATION

Invigation Interval	I immigration interval days
Irrigation Interval	I _i - irrigation interval, days
	V - net amount of water in single irrigation not to exceed
$I_i = V / CU$	the soil water holding capacity, mm
	CU - consumptive use, mm/day
$I_i = T_{ii} T_{ms}$	T _{ii} - number of irrigation days within the irrigation
	interval, days
	T _{ms} - number of days of moving the system and no
	water applied, days
Gross Amount of Water Per	V _g - gross amount of water applied per irrigation,
Irrigation	mm/day
	V - net amount of water applied in single irrigation not
$V_g = V / \xi_i$	to exceed the soil's water holding capacity, mm/day
, g , , 2i	$\xi_{\rm I}$ - irrigation efficiency, decimal
Application Rate	I - application rate, mm/hr
rippineuron rune	V _g - gross amount of water applied per irrigation, mm
$I = V_g / T_{sp}$	$T_{\rm sp}$ - time of sprinkling, hrs
Yg / Isp	Q - sprinkler discharge, m ³ /hr
I = 1000 [O /(S S)]	, I
$I = 1000 [Q/(S_m S_l)]$	S _m - sprinkler spacing between adjacent lateral, m
	S ₁ - sprinkler spacing along laterals, m
Area Irrigated by a single	A ₁ - area irrigated by a single lateral, ha
Lateral	L _e - effective length of lateral, m
	S _m - spacing between adjacent laterals, m
$A_1 = [L_e S_m] / 10000$	

SPRINKLER IRRIGATION

Sprinkler Discharge	Q _s - sprinkler nozzle discharge, gpm
	C - coefficient of discharge, 0.95 to 0.98 for well
$Q_s = 30 \text{ C } D_n^2 P_n^{0.5}$	designed small nozzle and 0.80 for larger
	nozzzle
	D _n - diameter of nozzle orifice, in.
	P _n - nozzle pressure, psi
Effective Length of Lateral	L _e - effective length of lateral, m
	N _{sl} - number of sprinkler along lateral
$L_e = N_{sl} S_l$	S ₁ - spacing of sprinkler along lateral, m
System Capacity	Q _s - system capacity, ha-mm/day
	A _s - average area irrigated per set, ha
$Q_s = A_s I$	I - application rate, mm/day
$Q_s = [453 \text{ A d}] / [F \text{ H}]$	Q _s - system capacity, gpm
	A - design area, acre
	d - gross depth of application, in
	F - time allowed for completion of one irrigation,
	days
	H - actual operating time, hr/day
D 11 40 111 H	
Density of Sprinklers per Hectare	N _{sp} - density of sprinklers per hectare, units of
$N_{\rm sp} = 10000 / [S_{\rm m} \ S_{\rm l}]$	sprinklers
	S _m - spacing between adjacent laterals, m
	S ₁ spacing along laterals, m

STATISTICS

A -: 41 4: (5)	= -::44:
Arithmetic mean (x)	\overline{x} - arithmetic mean
For small n: $\frac{1}{V} = \sum_{i=1}^{n} V_{i}$	n– number of observations
$\overline{\mathbf{x}} = \sum_{i=1}^{\infty} X_i$	
n	
for large n:	
$\overline{x} = \sum_{i} fx$	$\overline{\omega}$ – guess mean or the value estimated
$\overline{x} = \underline{\sum} fx$ $\overline{x} = \overline{w} + c \overline{d}$	to the nearest
$\overline{x} = \overline{w} + c \overline{d}$	c – class size
	n – number of observations
$\overline{d} = \underline{\sum} f d$	
n	
Median	c - class size
Y (2 2 3	L – lower value of the class range
$x = L + \frac{n/2 - f_1}{f_2} - C$	where the median class is located
t_2	n – number of observations
	f_1 – cumulative frequency of the
	premedian class
	f ₂ – frequency of the median class
Mode	L – lower limit of the modal class
112040	F – frequency of the modal class
$x = L = F - f_{pr}$	f _{pr} - frequency of the premodal class
$x = L = F - f_{pr}$ $2f - f_{nr} - f_{no}$	f_{po} – frequency of the post modal class
μ po	c – class size
Standard deviation	s – standard deviation
	n – number of observations
For small n:	
$s = \frac{\sqrt{\sum (x_i - \overline{x})^2}}{n-1}$	
S =	
For large n:	
1 50 2 (50)2/	
$\sqrt{\sum fx^2 - (\sum fx)^2/n}$	
S =	
n-1	

STATISTICS

Variance

Biased:

$$s^2 = \underbrace{\sum (x_i - x_i)^2}_{n}$$

Unbiased:

$$s^{2} = \frac{\sum (x_{i} - x)^{2}}{n - 1}$$

for small n:

$$s^2 = \frac{\sum (x_i - x_i)^2}{n-1}$$

direct computation:

$$s^2 = \frac{\sum x_i^2 - (\sum x_i)^2 / n}{n-1}$$

for large n:

machine form:

$$s^2 = \frac{\sum fx^2 - (\sum fx)^2/n}{1}$$

coded data:

$$s^{2} = c^{2} \left[\underbrace{\sum fd^{2} - (\sum fd)^{2}/n}_{n-1} \right]$$

S² - variance

n – number of observations

Permutation

$$nPr = \underline{n!}$$

$$(n-r)!$$

note:

$$0! = 1$$

n – number of objects

P – number of permutation

r - number of objects taken at a time

nPr – number of permutation of n

objects taken r at a time

STATISTICS

Combination	n – number of objects
Combination	C – number of combination
nCr =n!	r – number of objects taken at a time
$\frac{ncr - \frac{nr}{nr}}{(n-r)! r!}$	nCr – number of combination of n
(11-1)! 1!	objects taken r at a time
Compling and Compling	3
Sampling and Sampling	n – sample size
Designs	N – population size
C1	z – z value of the corresponding
Sample size:	confined level adopted
	Te – tolerable or permissible error for
2 (the corresponding confidence level
$n = N x z^2 x (p x q)$	p – the proportion of the population
${N \times (Te)^2 + (z^2 + pq)}$	decided to be the included portion
$N \times (1e)^{2} + (z^{2} + pq)$	q – the proportion of the population
T	decided to be the included portion
Two Ways of Solving a	n – sample size
Sample Size	z_{α} – value of the standardized normal
. ~	variate corresponding to the level of
1. Sample size which can	significance α
satisfy prescribed margin of	v _s – sampling variance
error of the plot mean.	x – arithmetic mean
25.4	d – margin or error expressed as a
$(\mathbf{Z}_{\alpha}^{2})(\mathbf{V}_{\mathbf{S}})$	fraction of the plot mean
$n = \frac{(z_{\alpha}^{2}) (v_{s})}{d^{2}(x^{2})}$	
$d^2(x^2)$	
	z_{α} – value of the standardized normal
2. Sample size which can	variate corresponding to the level of
satisfy a prescribed margin of	significance α
error of the treatment mean.	v _s – sampling variance
2	x – arithmetic mean
$n = \frac{(z_{\alpha}^{2})(v_{s})}{r(D^{2})(x^{2}) - (z_{\alpha}^{2}) v_{p}}$	r – number of replications
n =	D – prescribed margin of error
$r(D^2)(x^2) - (z_{\alpha}^2) v_p$	expressed of the treatment mean
	v_p – size of the experimental error

TEMPERATURE

Centigrade to Farenheight	F - farenheight, deg F
F = (9/5) C + 32	C - centigrade, deg C
Farenheight to Centigrade	C - centigrade, deg C F - farenheight, deg F
C = (5/9) F - 32	
Rankine to Centigrade	C - centigrade, deg C R - rankine, deg R
C = (5/4) R	, ,
Centigrade to Rankine	R - rankine, deg R C - centigrade, deg C
R = (4/5) C	
Rankine to Farenheight	R - rankine, deg R F - farenheight, deg F
F = (9/4) R + 32	
Farenheight to Rankine	F - farenheight, deg F R - rankine, deg R
R = (4/9) F - 32	
Centigrade to Kelvin	K - Kelvin, deg K C - centigrade, deg C
K = C + 273	
Farenheight to Kelvin	K - Kelvin, deg K F - farenheight, deg F
K = 1.8 F	

TILLAGE

Plow Area of Cut	A _c – area of cut of plow, m ²
Tiow firea of Cut	W _c – width of cut, m
$A_c = W_c D_c$	D _c – depth of cut, m
The We De	De depth of cut, in
Draft of Plow	F – draft of plow, kg
	A_c – area of cut, m^2
$F = A_c \delta_s$	δ_s – specific resistance of soil, kg/m ²
	os specific resistance of son, kg/m
Drawbar Horsepower	DHP – drawbar horsepower
r	F – draft of implement, kg
F V	V – velocity of implement, m/s
DHP = —	J 1
76.2	
Theoretical Field Capacity	C _t – theoretical field capacity, ha/hr
	W _i – width of implement, m
$C_t = 0.1 W_i V_i$	V _i – implement speed, kph
Effective Field Capacity	C _e – effective field capacity, ha/hr
	C _t – theoretical field capacity, ha/hr
$C_e = C_t \xi_f$	ξ_f – field efficiency, decimal
Field Efficiency	ξ_f – field efficiency, %
	C _e – effective field capacity, ha/hr
$\xi_{\rm f} = \frac{C_{\rm e}}{} \times 100$	C _t – theoretical field capacity, ha/hr
$\xi_{\rm f} = - x 100$	
C_{t}	

TILLAGE

Number of Incolors and IIn:4	N avades of implement valts
Number of Implement Unit	N _I – number of implement units
	A_f – area of the farm, hectares
A_{f}	T_o – total operating time to finish operation,
$N_{I} = \frac{A_{f}}{}$	hours
T _o C _e	Ce – effective field capacity of implement,
	ha/hr
Time to Finish Tillage Operation	T _o – time required to finish tillage
	operation, hr
A_{f}	A_f – area of the farm, hectares
$T_o = \frac{A_f}{}$	C _e – effective field capacity, ha/hr
C _e N _I	N _I – number of tillage implement
v .	
Width of Cut of Disc Plow	W - width of cut, m
	N - number of disk
0.95 N S + D	S - disk spacing, mm
W =	D - diameter of disk, mm
1000	
Width of Cut of Disc Harrow (Single	W - width of cut, m
Action)	N - number of disk
	S - disk spacing, mm
0.95 N S + 0.3 D	D - diameter of disk, mm
W =	,
1000	
1000	

TILLAGE

Width of Cut of Disc Harrow (Tandem Type) $W = \frac{0.95 \text{ N S} + 1.2 \text{ D}}{1000}$	W - width of cut, m N - number of disk S - disk spacing, mm D - diameter of disk, mm
Width of Cut of Disc Harrow (Offset Type) $W = \frac{0.95 \text{ N S} + 0.6 \text{ D}}{1000}$	W - width of cut, m N - number of disk S - disk spacing, mm D - diameter of disk, mm
Draft of Moldboard Plow $D = 7.0 + 0.049 \text{ S}^2 : \text{ silty clay}$ $D = 6.0 + 0.053 \text{ S}^2 : \text{ clay loam}$ $D = 3.0 + 0.021 \text{ S}^2 : \text{ loam}$ $D = 3.0 + 0.056 \text{ S}^2 : \text{ sandy silt}$ $D = 2.8 + 0.013 \text{ S}^2 : \text{ sandy loam}$ $D = 2.0 + 0.013 \text{ S}^2 : \text{ sand}$	D - unit draft of implement, N/cm ² S - implement speed, kph

Engine Speed	V _e – engine speed, km/hr
	R – diameter of wheel, m
$0.333~\mathrm{R}~\mathrm{N_e}$	N _e – engine speed. Rpm
$V_e =$	I – reduction ratio, 1 st gear equal to 4.48 and 4 th
I	gear equal to 1.45
Engine Power	P _w – wheel power, kw
	P _e – engine power, kw
$P_w = \eta P_e$	η -mechanical efficiency, 0.75 to 0.95
·	
PTO Power	P _{pto} – PTO horsepower, kw
	P _e – engine power, kw
$P_{pto} = \eta P_e$	η -mechanical efficiency, 0.75 to 0.95
Wheel Axle Torque	T – wheel axle torque, N-m
	N – wheel axle power, kw
1000 N	n – speed of the wheel axle, rpm
T =	
2 π n	

Wheel Axle Power	P _d – drawbar power or effective power, kW P _w – wheel axle power, kw
$P_d = P_w - P_1$ or	P ₁ – lost power, kw
D (D D)	P _s – lost power by slip of wheel, kw
$= P_w - (P_s + P_r)$	P _r – lost power by rolling resistance, kw
Traction Efficiency	η _d – traction efficiency, %
	P _d – drawbar power, kw
$\eta_d = P_d / P_w$	P _w – wheel power , kw
Running Resistance	R – rolling resistance, kgf
$R = C_r W$	$C_{\rm r}$ – coefficient of rolling resistance 0.01 to 0.4 for wheel type and 0.05 to 0.12 for track type W - trator weight, kg
Drive Wheel or Track Slippage	% Slip – percent wheel slip, %
$\% Slip = 100 \frac{R - r}{r}$	R – total drive wheel revolution count to traverse the drawbar runway under no load, rev r – total drive wheel revolution count to traverse the drawbar runway under load, rev

$ \begin{array}{c} \textbf{Travel Reduction or Slip} & S-slip, \% \\ A_n-\text{tract revolution under no load condition, m} \\ S=100 & \\ A_l & \\ \hline \textbf{Stability Factor} & K-\text{stability factor, 1.25 min} \\ \end{array} $
$S = 100$ $A_n - A_1$ $A_l - A_l$ $A_l - A_l$ $A_l - A_l$ $A_l - A_l$
$S = 100 - A_1$
A_l
·
Stability Factor K – stability factor 1 25 min
F _w – static front end weight, kg
$F_{\rm w}$ $W_{\rm b}$ $W_{\rm b}$ - wheel base,
$K = \frac{F_w W_b}{P h}$ W_b - wheel base, P - maximum drawbar pull parallel to ground, kg P - height of static line of pull perpendicular to
P h h – height of static line of pull perpendicular to
ground
Drawbar Power DHP - drawbar power, kW
F - force measured, kN
DHP = $(F S) / 3.6$ S - forward speed, km/hr
PTO Power PTOP - power take-off power, kW
F - tangential force, kN
PTOP = $2 \pi F R N / 60$ R - radius of force rotation, m
N - shaft speed, rpm
$PTOP = 2 \pi T N / 60$ T - torque, N-m
1 /
Hydraulic Power Hy P – hydraulic power, kW
P _g - gage pressure, kPa
$HyP = P_g Q / 1000 \qquad Q - flow rate, lps$

Drawbar Horsepower	DHP - drawbar power, hp
	NEP - net engine power, hp
$DHP = \xi_m \times NEP$	ξ_m - mechanical efficiency, 0.75 to 0.81
PTO Power	PTOP - power take-off power, hp
	NEP - net engine power, hp
$PTOP = \xi_m \times NEP$	ξ_m - mechanical efficiency, 0.87 to 0.90
Axle Power	AXP - axle power, hp
	NEP - net engine power, hp
$AXP = \xi_m \times NEP$	ξ_m - mechanical efficiency, 0.82 to 0.87
Drawbar Horsepower	DHP - drawbar power, hp
	PTOP – power take-off power, hp
$DHP = \xi_m x PTOP$	ξ_m - mechanical efficiency, 0.86 to 0.89

TRIGONOMETRY

 $A + B + C = 180^{\circ}$

$$A + B = 90^{\circ}$$

 $C = 90^{\circ}$

 $\sin \theta = \text{opp} / \text{hyp}$

 $\cos \theta = \text{adj / hyp}$

 $\tan \theta = \text{opp} / \text{hyp}$

a - opposite

b – adjacent

c – hypotenuse

Reciprocal terms:

 $\sin \theta = \csc \theta$

 $\cos \theta = \sec \theta$

 $\tan \theta = \cot \theta$

 $\sin 30 = \cos (90^{\circ} - 30^{\circ})$

Given \angle is α	Given is β
$\sin \alpha = a / c$	$\sin \beta = b / c$
$\cos \alpha = b / c$	$\cos \beta = a / c$

 $\tan \alpha = a / b$ $\tan \beta = b / a$ co – function:

 $\sin \alpha = \cos (90^{\circ} - \alpha)$

 $\cos \alpha = \sin (90^{\circ} - \alpha)$

 $\tan \alpha = \cot (90^{\circ} - \alpha)$

 $\sec \alpha = \csc (90^{\circ} - \alpha)$

Identities: Reciprocal

 $\sin \theta = 1 / \cos \theta$; $\sin \theta \csc \theta = 1$

 $\cos \theta = 1 / \sec \theta$; $\cos \theta \sec \theta = 1$

 $\tan \theta = 1 / \cot \theta$; $\tan \theta \cot \theta = 1$

 $\csc \theta = 1 / \sin \theta$ $\sec \theta = 1 / \cos \theta$

 $\cot \theta = 1 / \tan \theta$

TRIGONOMETRY

Pythagorean:

$$\sin^2 \theta + \cos^2 \theta = 1$$
; $\sin^2 \theta = 1 - \cos^2 \theta$;
 $\cos^2 \theta = 1 - \sin^2 \theta$
 $1 + \tan^2 \theta = \sec^2 \theta$; $1 = \sec^2 \theta - \tan^2 \theta$;
 $\tan^2 \theta = \sec^2 \theta - 1$

$$1 + \cot^2 \theta = \csc^2 \theta$$
; $1 = \csc^2 \theta - \cot^2 \theta$; $\cot^2 \theta = \csc^2 \theta - 1$

Ratio:

$$\tan \theta = \sin \theta / \cos \theta$$
; $\tan \theta \cos \theta = \sin \theta$

$$\cot \theta = \cos \theta / \sin \theta; \cot \theta \sin \theta = \cos \theta$$

Half Angle Formulas

$$\sin x/2 = \pm \sqrt{1 - \cos x}$$

$$\cos x/2 = \pm \frac{\sqrt{1 + \cos x}}{2}$$

$$\tan x/2 = \underbrace{1 - \cos x}_{\sin x} = \underbrace{-\sin x}_{1 + \cos x}$$

Double Angle Formula

$$\sin 2x = 2 \sin x \cos x$$

$$\frac{1}{2} \sin 2x = \sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= \cos^2 x - (1 - \cos^2 x)$$

$$= 2 \cos^2 x - 1$$

$$= 1 - 2\sin^2 x$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

TRIGONOMETRY

Sum and Difference of Two Angles	
$\sin (A\pm B) = \sin A \cos B + \cos A \sin B$ $\cos(A\pm B) = \cos A \cos B \pm \sin A \sin B$ $\tan(A\pm B) = \underline{\tan A \pm \tan B}$	
1± tan A tan B	
Area of Triangle	
Given three sides a, b and c:	
Hero's Formula:	
$A = \sqrt{s(s-a)(s-b)(s-c)}$	
$s = \frac{1}{2}(a+b+c)$	

WATER TREATMENT

Settling Velocity	V _s - settling velocity, m/hr
	H - depth of settling tank, m
$V_s = H/T$	T - detention time, hour
Volume of Settling Tank	V _t - volume of settling tank, m ³
	Q - throughput, m ³ /hr
$V_t = Q / T$	T - detention time, hrs
Filter Surface Area	A - filter area, m ²
	Q - throughput of water, m ³ /hr
A = Q / (a v)	a - operating time, hr/day
	v - filtration rate, m ³ /m ² -hr
Amount of Active Chlorine per	Q _{ac} - amount of active chlorine per hour, g/hr
Hour	D _c - chlorine demand, g/m ³
	Q _t - amount of water to be treated, m ³ /hr
$Q_{ac} = D_c Q_t$	
Chlorine Demand	D _c - chlorine demand, mg/l
	C _c - chlorine consumption, mg/l
$D_c = C_c + R_d$	R _d - desired residual, 0.1 to 0.3 mg/l

WEIR, FLUMES, AND ORIFICE

Rectangular Weir Without Contraction	Q – discharge, lps
2/2	L - length of weir crest, cm
$Q = 0.0184 L H^{3/2}$	H - total head, cm
Rectangular Weir With Contraction	Q – discharge, lps
0 000 (x 000 xx 3/2	L - length of weir crest, cm
$Q = 3.33 (L - 0.2 H) H^{3/2}$	H - total head, cm
T	O discharge las
Trapezoidal Weir (4h:1l)	Q – discharge, lps
$Q = 0.0186 L H^{3/2}$	L - length of weir crest, cm H - total head, cm
Q = 0.0180 L 11	11 - total flead, Cili
Triangular Weir (90 deg)	Q – discharge, lps
irmigum wen (50 deg)	H - total head, cm
$Q = 0.0138 \text{ H}^{5/2}$,
Parshall Flume (1 to 8 ft Throat Width)	Q - discharge, lps
0.026	W - throat width, cm
0.026	H_a – head on the crest, cm
$Q = 4 W H_a^{1.522 W}$	
0.10	0 1: 1
Orifice	Q – discharge, lps
$Q = 0.61 \times 10^{-3} \text{ A } (2\text{gh})^{0.5}$	A – area of orifice, cm ²
Q = 0.01 x 10 A (2gff)	g – gravitational acceleration, 9.8 cm/sec ² h – head, cm
	ii – iicau, ciii

WEIR, FLUMES, AND ORIFICE

Submerged Orifice	Q – discharge, lps
$Q = 0.027 \text{ A g (h)}^{\frac{1}{2}}$	A – area of orifice, cm ² g – gravitational acceleration, 9.8 cm/sec ² h – head, cm

WIND ENERGY

Wind Power	P _w - wind power, watts
	ρ - air density, 1.25 kg/m ³
$P_{\rm w} = \frac{1}{2} \rho A_{\rm r} V^3$	A_r – rotor area, m ²
" · ·	V – velocity of the wind, m/s
Performance Coefficient	P _{shaft} – power at the rotor shaft, watts
	C _p – power coefficient, 0.17 to 0.47
$P_{\text{shaft}} = C_p \frac{1}{2} \rho A V^3$	ρ - air density, 1.25 kg/m ³
	A – rotor area, m ²
	V – wind velocity, m/s
Tip-Speed Ratio	λ - tips-speed ratio, decimal
	R – rotor radius, m
$\lambda = 2 \pi R N / V$	N – rotor speed, rps
	V – wind velocity, m/s
Hydraulic Power	P _h – hydraulic power, watts
	$\rho_{\rm w}$ – water density, 1000 kg/m ³
$P_h = \rho_w g Q H$	g – gravitational acceleration, 9.8 m/s
	Q – water flow rate, m^3/s
	H – lifting head, m
Overall System Efficiency	ξ - overall system efficiency, %
	P _h – hydraulic power, watts
$\xi = P_h/P_w$ or	P _e – electrical power, watts
	P _w – wind power, watts
$\xi = P_e/P_w$	

WIND ENERGY

Windpump Rotor Diameter	D _r – rotor diameter, m
	P _h – hydraulic power, watts
$D_r = (8 P_h / \pi \rho_w \xi V^3)^{1/2}$	$\rho_{\rm w}$ – density of water, 1000 kg/m ³
, , , , , , , , , , , , , , , , , , ,	ξ - overall system efficiency, 0.1
	V – wind velocity, m/s
Windturbine Rotor Diameter	D _r – rotor diameter, m
	P _e – electrical power, watts
$D_r = (8 P_e / \pi \rho \xi V^3)^{1/2}$	ρ - air density, 1.25 kg/m ³
	ξ - overall system efficiency, 0.2
	V – wind velocity, m/s

CONVERSION CONSTANTS

```
= 12 inches
Length
                  1 ft
                  1 yard
                                   = 3 \text{ feet}
                  1 mi
                                   = 5280 feet
                                   = 0.3937 inch
                  1 cm
                                   = 2.54 \text{ cm}
                  1 inch
                                   = 3.28 \text{ feet}
                  1 m
                                   = 10^4 \text{ microns}
                  1 cm
                                   = 1.609 \text{ km}
                  1 mi
                  1 acre
                                   = 0.4047 hectare
Area
                                   = 2.47 acre
                  1 ha
                  1 \text{ ft}^2
                                   = 144 \text{ in.}^2
                                   = 43,560 \text{ ft}^2
                  1 acre
                  1 \text{ mi}^2
                                   = 650 acres
                  1 \text{ m}^2
                                   = 10.76 \text{ ft}^2
                  1 \text{ ft}^2
                                   = 929 \text{ cm}^2
                  1 in.<sup>2</sup>
                                   = 6.452 \text{ cm}^2
                                   = 1000 cc
Volume
                  1 liter
                                   = 0.2642 \text{ gal}
                                   = 61.025 \text{ in.}^3
                                   = 10^3 \text{ cm}^3
                  1 \text{ ft}^3
                                   = 144 \text{ in.}^3
                                   = 7.482 \text{ gal}
                                   = 28.317  liter
                                   = 28,317 \text{ cm}^3
                                   = 43,560 \text{ ft}^3
                  1 acre-ft
                                   = 3.7854 liter
                  1 gal
                                   = 231 \text{ in}^3
                                   = 8 pint
```

Density	1 m ³ 1 lb/in. ³ 1 slug/ft ³ 1 lb/ ft ³ 1 gm/cm ³	= 35.31 ft ³ = 10 ³ liter = 1728 lb/ft ³ = 32.174 lb/ft ³ = 0.51538 gm/cm ³ = 16.018 kg/m ³ = 1000 kg/m ³
Angular	2π 1 rad 1 rev 1 rpm 1 rad/sec	= 6.2832 radian = 57.3 deg = 2 π = 2 π rad/min = 9.549 rpm
Time	1 min 1 hour 1 day	= 60 seconds = 3600 seconds = 60 min = 24 hours
Speed	1 mph 1 fps 1 knot 1 m/s	= 88 fpm = 0.44704 m/s = 1.467 fps = 0.6818 mph = 0.3048 m/s = 0.5144 m/s = 1.152 mph = 3.6 kph = 2.24 mph = 3.28 fps

Force, Mass 1 lb = 16 oz= 444,820 dynes= 32.174 poundals = 4.4482 N= 7000 grains = 453.6 g1 slug = 32.174 lb= 14.594 kg= 14.594 kg1 kg = 2.205 lb= 9.80665 N= 1 kilopond 1 kip = 1000 lb= 980.665 dynes 1 g = 2000 lb1 ton = 907.18 kg= 28.35 gm1 oz 1 metric ton = 1000 kg= 9.8 kgf1 Newton $= 0.225 \, lbf$ Pressure 1 atm = 1.033 bar= 33.90 ft of water (at 4° C) = 10.33 m of water (at 4° C = 14.7 psi $= 101,\bar{3}25 \text{ N/m}^2$ $= 29.921 \text{ in. Hg } (0^{\circ}\text{C})$ $= 33.934 \text{ ft H}_2\text{O} (60^\circ\text{F})$ $= 760 \text{ mm Hg } (O^{\circ}C)$ $= 406.79 \text{ in. H}_2\text{O} (39.2^{\circ}\text{F})$

 $= 1.0332 \text{ kg/cm}^2$

= 10 m of water1 bar = 13.6 kg1 mm Hg $(0^{\circ}C)$ 1 psi = 27.684 inches of water = 2.036 inches mercury = 51.715 mm Hg (0 C) $= 0.0731 \text{ kg/cm}^2$ $= 47.88 \text{ N/m}^3$ 1 psf 1 in. Hg = 13.57 in. H_2O (60°F) (60°F) = 0.4898 psi 1 N/m^2 $= 0.1 \text{ dyne/cm}^2$ = 0.0361 psi $1 \text{ in } H_20$ = 0.0736 inches mercury Energy = 778.16 ft-lb1 Btu = 251.98 cal= 1.055 kJ1 hp-hr $= 2544.4 \, \text{Btu}$ 1 J = 1 wt-s= 1 N-m $= 0.01 \text{ bar-dm}^3$ 1 hp-s = 550 ft-lb1 hp-min = 42.4 Btu= 33,000 ft-lb= 3412.2 Btu 1 kw-hr = 3600 kJ= 1 kw-s1 kJ = 101.92 kg-mkcal/gmole = 1800 Btu/pmole

```
1 \text{ wt-s} = 1 \text{ V-amp}
         1 kw-s
                         = 737.562 \text{ ft-lb}
         1 kw-min
                         = 56.87 Btu
        1 atm-ft<sup>3</sup>
                         = 2.7194 \, \text{Btu}
         1 J
                         = 10^7 \,\mathrm{ergs}
         1 ft-lb
                         = 1.3558 J
                         = 4.1668 \text{ kJ}
         1 kcal
                         = 0.746 \text{ kw}
         1 hp
         1 kW
                         = 1.34 \text{ hp}
                         = 1.32 cv metric horsepower in French
         1 PS
                         = 0.986 \text{ Hp}
         1 wt-hr
                         = 860 \text{ cal}
Entropy, Specific Heat, Gas Constant
        1 cal/g-°K
                                  = 1 Btu/lb-{}^{\circ}R
        1 kcal/kg-°K
                                  = 1 \text{ kcal/kg-}^{\circ}\text{R}
                                  = 4.187 \text{ kJ/kg-}^{\circ}\text{K}
        1 Btu/lb-°R
Universal Gas Constant
                 1 \text{ pmole-}^{\circ}R = 1545.32 \text{ ft-lb}
                                  = 0.7302 \text{ atm-ft}^3
                                  = 1.9859 Btu
                                  = 10.731 \text{ psi-ft}^3
                 1 \text{ kgmole-}^{\circ}\text{K} = 8.3143 \text{ kJ}
                                  = 0.08206 \text{ atm-m}^3
                 1 \text{ gmole-}^{\circ}\text{K} = 82.057 \text{ atm-cm}^{3}
                                  = 1.9859 \text{ cal}
                                  = 83.143 \text{ bar-cm}^3
                                  = 8.3143 J
                                  = 8.3149 \times 10^7 \text{ erg}
                                  = 0.083143 bar-liter
Standard Gravity g, (as conversion unit)
                                  = 32.174 \text{ fps}^2\text{-lb}
                 1 slug
                                  = 388.1 \text{ ips}^2\text{-lb}
                 1 psin
```

 $1 s^2 - kg = 9.80665 N - m$

 $1 s^2$ -gm

= 980.665 cm-dynes

REFERENCES

AMTEC. Philippine Agricultural Engineering Standards. Volume I. Agricultural Machinery Testing and Evaluation Center. College of Engineering and Agro-Industrial Technology. University of the Philippines, Los Banos, College Laguna.

AMTEC. Philippine Agricultural Engineering Standards. Volume II. Agricultural Machinery Testing and Evaluation Center. College of Engineering and Agro-Industrial Technology. University of the Philippines, Los Banos, College Laguna.

Andreas, J. C. 1982. Energy-Efficient Electric Motors. Selection and Application. Marcel Dekker, Inc. 270 Madison Avenue, New York, New York 10016 USA. 200pp.

Aprovecho Institute. 1984. Fuel Saving Cookstove. GATE/GTZ, Postbox 5180, D-6236 Eschborn 1, Federal Republic of Germany. 128pp.

ASAE. ASAE Standards 1997. Standard Engineering Practices Data. The Society for Engineering in Agricultural, Food and Biological Systems. 2950 Niles Road, St. Joseph, MI 49085-9659 U.S.A. 978pp.

Boost, M. 1992. Refrigeration. CBS Publishers and Distributors. 485 Jain Bhawan BholaNath Nagar, Delhi. 450 pp.

Brown, R. H. 1956. Farm Electrification. Mc-Graw-Hill Book Company. New York. U.S.A. 367pp.

Butlig, F. and R. Branzuela. 1988. Handbook of Applied Engineering. Formulas: Irrigation and soil and Water Conservation. National Book Store. Metro Manila. 90pp.

Campbell, J.K. 1990. Dibble Sticks, Donkeys and Diesel. International Rice Research Institute. Los Baños, Laguna, Philippines. 329pp.

Cardenas. E. 1989. Fundamentals of Electricity. National Bookstore. Quad alpha Centrum Bldg. 125 Pioneer St. Mandaluyong City.. 141pp.

CLSU. Training Course Manual on Design, Installation, and Evaluation of Drip/Sprinkler Irrigation Systems. Training Course Manual. Central Luzon State University, Munoz, Nueva Ecija. October 1995.

Creamer, R. H. 1984. Machine Design. Third Edition. Addison-Wesley Publishing Co., Inc. Reading, Mass. USA. 654pp.

Eldridge, Frank R. Wind Machines. The MITRE Energy Resources and Environment Series. New York: Van Nostrand Reinhold Co. 2nd edition. 1980. 215pp.

Fajardo, M. 2001. Simplified Methods on Building Construction. Second Edition. 5138 Merchandizing. 10-A Pangilinan Street, Congressional Avenue. Project 6 diliman, quezon City. 389pp.

GATE/GTZ. 1986. Solar Energy: Status Report. GATE//GTZ. Postbox 5180. D-6236 Eschborn 1. Federal Republic of Germany. 54pp.

GATE/GTZ. Wind Energy. Postbox 5180, D-6236 Eschborn 1, Federal Republic of Germany. 1985. 54pp.

Herber, G. 1985. Simple Methods for the Treatment of Drinking Water. GATE/GTZ. Postbox 5180, D-6236 Eschborn 1, Federal Republic of Germany. 77pp.

Hunt, D. 1983. Farm Power and Machinery Management. Eight Edition. Iowa State University Press. Ames, Iowa. 352pp.

IRRI. Small Farm Equipment for Developing Countries. Proceedings of the International Conference on Small Farm Equipment for Developing Countries: Past Experiences and Future Priorities 2-6 September 1985. The International Rice Research Institute. P.O. Box 933, Manila, Philippines. 629pp.

Jacob, M. and G. Hawkins. 1957. Element of Heat Transfer. 3rd Edition. John Wiley and Sons. New York. 317pp.

Kaupp, A. 1984. Gasification of Rice Hulls. GATE/GTZ, Postbox 5180, D-6236 Eschborn 1, Federal Republic of Germany. 303pp.

Krutz, G., Thompson, L., and P. Claar. 1984. Design of Agricultural Machines. John Wiley and Sons, Inc. New York, USA. 472pp.

Levinson, I. J. 1978. Machine Design. Reston Publishing Company, Inc. Reston, Virginia. A Prentice-Hall Company. Reston Virginia. 512pp.

Miller, R and M. R. Miller. 1984. Small Gasoline Engines. Theodore Audel and Company. Boston. 632pp.

PCARRD. The Philippine Recommends for Irrigation Water Management. Philippine Council for Agricultural and Natural Resources Research and Development. Los Banos, Laguna. 120pp.

RNAM. Agricultural Machinery Design and Data handbook. (Seeders and Planters). Regional Network for Agricultural Machinery. Economic and Social Commission for Asia and the Pacific. United Nation Bldg., Rajadamnem Avenue, Bangkok, Thailand. October 1991. 137pp.

Sasse, Ludwig. 1984. Biogas Plants: Design and Details of Simple Biogas Plants GATE/GTZPostbox 5180. D-6236 Eschborn 1. Federal Republic of Germany. 85pp.

Smith, H.P. and L.H. Wilkes. 1977. Farm Machinery and Equipment. Sixth Edition. Tata McGraw Hill Publishing Company LTD. New Delhi, India. 487pp.

Stephenson, G. E. 1984. Small Gasoline Engines. Fourth Edition. Delmar Publishers Inc. Canada. 279pp.

Schwab, G., Barnes, K., Frevert, R., and T. Edminster. Elementary. 1971. Soil and Water Engineering. Second Edition. John Wiley and Sons. New York. 316pp.

Schwab, G., Fangmeier, D., Elliot, W., and R. Frevert. 1993. Soil and Water Conservation Engineering. Fourth Edition. John Wiley and Sons, Inc. New York. 507pp.

Starkey, P. Harnessing and Impelemtns for Animal Traction. GATE/GTZ, Postbox 5180, D-6236 Eschborn 1, Federal Republic of Germany. 245pp.

Tanaka, T. Farm Tractor. Handout Sheet. JICA Agricultural Machinery Management Course. Japan. 45pp.

Velasco, R. 1997. Handbook of Construction Estimate. Loacan Publishing House. Metro Manila. 147pp.

Wimberly, J.E. 1983. Technical Handbook for the Paddy Rice Postharvest Industry in Developing Countries. The International Rice Research Institute. Los Baños, Laguna. Philippines. 188pp.